Answer:
q=1910.71 W/m²
T=383.07 K
Step-by-step explanation:
Given that
L₁=0.25 m ,K₁=1.13 W/(m.K)
L₂=0.2 m , K₂=1.45 W/(m.K)
L₃= 0.1 m , K₃=0.66 W/(m.K)
h₁=115 W/(m².K)
h₂=23 W/(m².K)
The total thermal resistance
![R=(L_1)/(K_1A)+(L_2)/(K_2A)+(L_3)/(K_3A)+(1)/(h_1A)+(1)/(h_2A)\ K/W](https://img.qammunity.org/2020/formulas/engineering/college/qigkb5ocpplg8pfnr3x8cbkdd73vhvcmvi.png)
Now by putting the values
Put A= 1 m² ( To find heat transfer per unit area)
![R=(L_1)/(K_1A)+(L_2)/(K_2A)+(L_3)/(K_3A)+(1)/(h_1A)+(1)/(h_2A)\ K/W](https://img.qammunity.org/2020/formulas/engineering/college/qigkb5ocpplg8pfnr3x8cbkdd73vhvcmvi.png)
![R=(0.25)/(1.13)+(0.2)/(1.45)+(0.1)/(0.66)+(1)/(115)+(1)/(23)\ K/W](https://img.qammunity.org/2020/formulas/engineering/college/9815l0pr4imimc7uuclox0iv5kfbjlasq1.png)
R= 0.56 K/W
We know that
q= ΔT/R
Here ΔT = 1370 - 300 K =1070 K
Now by putting the values
q= 1070/0.56
q=1910.71 W/m²
Lets T is the outside surface temperature
q = h₂ ( T- 300)
Now by putting the values
1910.71 = 23 ( T- 300)
T=383.07 K