28.7k views
5 votes
Rewrite each of the following expressions so that the number inside the radical is as small as possible. For example, rewrite √18 as 3√2.

√50= 

√28= 

√252=



1 Answer

13 votes

Answer:

1)
\mathbf{√(50)= 5√(2) }

2)
\mathbf{√(28)= 2√(7) }

3)
\mathbf{√(252)= 6√(7) }

Explanation:

We need to simplify the radicals:

1)
√(50)

First we find prime factors of 50

50 = 2 x 5 x 5

Now,


√(50)\\=√(2* 5* 5)\\=√(2* 5^2)\\ =√(2) √(5^2)\\=5√(2)

So,
\mathbf{√(50)= 5√(2) }

2)
√(28)

First we find prime factors of 28

28 = 2 x 2 x 7

Now,


√(28)\\=√(2* 2* 7)\\=√(2^2* 7)\\ =√(2^2) √(7)\\=2√(7)

So,
\mathbf{√(28)= 2√(7) }

3)
√(252)

First we find prime factors of 252

50 = 2 x 2 x 3 x 3 x 7

Now,


√(252)\\=√(2* 2* 3* 3 *7)\\=√(2^2* 3^2 *7)\\ =√(2^2) √(3^2)√(7) \\=2* 3√(7)\\=6√(7)

So,
\mathbf{√(252)= 6√(7) }

User Piotr Mirosz
by
5.5k points