Answer:
The explicit function is:
![S_(n) =Pz^(n-1) +C((z^(n-1)-1)/(z-1) )](https://img.qammunity.org/2020/formulas/mathematics/high-school/krcei5ygateov70jbjrjnagvzdbr0w74vo.png)
where
![z=(1+(0.02)/(12))](https://img.qammunity.org/2020/formulas/mathematics/high-school/uks88sw8gljfae5s1wcxy4ykwkfbb0y4ia.png)
and we calculate S12:
![S_(12) = $1211.06](https://img.qammunity.org/2020/formulas/mathematics/high-school/l233ad4rc7fmmjfm8q94mfqosw5h41kgi5.png)
Explanation:
Expanding a few steps of the compound interest:
![S_(1)=100\\S_(2)=S_(1)(1+(0.02)/(12))+100\\S_(3)=S_(2)(1+(0.02)/(12))+100\\...\\S_(n)=S_(n-1)(1+(0.02)/(12))+100](https://img.qammunity.org/2020/formulas/mathematics/high-school/leljqynvcglkfu6eiods8yv57h4l7yezms.png)
We can write:
![(1+(0.02)/(12))=z](https://img.qammunity.org/2020/formulas/mathematics/high-school/xlajnhzjixhrloqgq58r3uaag7lrm1q1r7.png)
for deposits
Then, expanding the previous equations would yield:
![S_(1)=C\\S_(2)=Cz + C\\S_(3)=Cz^(2)+Cz + C\\S_(n)=Cz^(n-1) +...+Cz+C](https://img.qammunity.org/2020/formulas/mathematics/high-school/x0nh2npudplb4bzjwobzkxqp89c9rty26j.png)
This is a geometric series form, which can be simplified to:
![S_(n)=C((z^(n)-1)/(z-1) )](https://img.qammunity.org/2020/formulas/mathematics/high-school/u8p4vtem1svp78su0khu2762uzclcgrw9w.png)
plugin in the values for the 12 month gives:
![S_(12)=100(((1+(0.02)/(12))^(12) -1)/((0.02)/(12)))=1211.0613](https://img.qammunity.org/2020/formulas/mathematics/high-school/ey52aks0s6oubl8b7b6plde26cvrgi4ts0.png)