153k views
1 vote
Write (1 + i)^10 as a complex number of the form a+ ???????????????? for real numbers aand ????????.

User FLP
by
4.9k points

1 Answer

2 votes

Answer:a=0

b=32

Explanation:

Given

Complex number
z=\left ( 1+i\right )^(10)

any complex number is written in the form


z=re^(i\theta )

where r=magnitude

so
z=\left [ √(2)\left ( (1)/(√(2))+i(1)/(√(2))\right )\right ]^(10)


z=\left ( √(2)\right )^(10)\left ( \cos 45+i\sin 45\right )^(10)


z=2^5\left ( e^{i(\pi )/(4)}\right )^(10)


z=32\left ( e^{(5\pi )/(2)}\right )


(5\pi )/(2)=2\pi +(\pi )/(2)


z=32\left ( e^{i(\pi )/(2)\right )


z=32\left ( \cos (\pi )/(2)+i\sin (\pi )/(2)\right )

real part
a=32* \cos (90)=0


b=32* \sin (90)=32

User Tore Nestenius
by
5.6k points