Answer:
The function
is indeed a solution of the two dimensional Laplace equation
.
The wave equation
is satisfied by the function
but not by the function
.
Explanation:
To verify that the function
is a solution of the 2D Laplace equation we calculate the second partial derivative with respect to x and then with respect to t.
![u_(xx)=(2)/(ln(10))((x^(2) +y^(2))^(-1) -2x^(2) (x^(2) +y^(2))^(-2))](https://img.qammunity.org/2020/formulas/mathematics/college/511du173qmogrkb6gbw88uunsdlq6bwqs8.png)
![u_(yy)=(2)/(ln(10))((x^(2) +y^(2))^(-1) -2y^(2) (x^(2) +y^(2))^(-2))](https://img.qammunity.org/2020/formulas/mathematics/college/b67gmxybtiov0xuxlt93rl9qlkv05bny2c.png)
then we introduce it in the equation
![u_(xx) +u_(yy) =0](https://img.qammunity.org/2020/formulas/mathematics/college/gm60v4lqtq7j6ypk8ovbkaujnul87lgq7i.png)
we get that
![(2)/(ln(10)) ((2)/((x^(2)+y^(2)) ) - (2)/((x^(2)+y^(2) ) ) )=0](https://img.qammunity.org/2020/formulas/mathematics/college/3biijwcw8zxl4ms512n9kxyrjchacwp5ve.png)
To see if the functions 1)
and 2)
solve the wave equation we have to calculate the second partial derivative with respect to x and the with respect to t for each function. Then we see if they are equal.
1)
![u_(xx)=-16 cos (4x) cos (4t)](https://img.qammunity.org/2020/formulas/mathematics/college/8oqnv1oyxz4kx90fs27wl1s6vvd5ommiz2.png)
![u_(tt)=-16cos(4x)cos(4t)](https://img.qammunity.org/2020/formulas/mathematics/college/7pvahguwbfa9velvchqh6c6e1bekymtv8f.png)
we see for the above expressions that
![u_(tt) =u_(xx)](https://img.qammunity.org/2020/formulas/mathematics/college/jocqag2mwlz9ncm4j6rv74l6e5ne3313bb.png)
2) with this function we will have to use the chain rule
If we call
and
then we have that
![u(x,t)=f(x-t)+f(x+1)=f(s)+f(w)](https://img.qammunity.org/2020/formulas/mathematics/college/iwp2s8c56qokhc5hs2zl2vnicmeg3a1v5r.png)
So
![(\partial u)/(\partial x)=(df)/(ds)(\partial s)/(\partial x) +(df)/(dw) (\partial w)/(\partial x)](https://img.qammunity.org/2020/formulas/mathematics/college/jtsuoquc8wdsz42606kd5tere5bsqg4b22.png)
because we have
and
![(\partial w)/(\partial x) =1](https://img.qammunity.org/2020/formulas/mathematics/college/to1df3p55ittx5qf1t5ou099tad4gg7qvy.png)
then
![(\partial u)/(\partial x) =f'(s)+f'(w)](https://img.qammunity.org/2020/formulas/mathematics/college/z36mhhkzgq5c9z0nasoeziixba4yc9yxrn.png)
⇒
![(\partial^(2) u )/(\partial x^(2) ) =(\partial)/(\partial x) (f'(s))+ (\partial)/(\partial x) (f'(w))](https://img.qammunity.org/2020/formulas/mathematics/college/3qdvt3p6qw7bxc8jyshw0zx7tffo2ad9zw.png)
⇒
![(\partial^(2) u )/( \partial x^(2) ) =(d)/(ds) (f'(s))(\partial s)/(\partial x) +(d)/(ds) (f'(w))(\partial w)/(\partial x)](https://img.qammunity.org/2020/formulas/mathematics/college/7bj5of6kwz07x1mwfwt43wwddu0idef329.png)
⇒
![(\partial^(2) u )/( \partial x^(2) ) =f''(s)+f''(w)](https://img.qammunity.org/2020/formulas/mathematics/college/3ph363jfp91vimtbm9lr50x0uqugxmacek.png)
Regarding the derivatives with respect to time
![(\partial u)/(\partial t)=(df)/(ds) (\partial s)/(\partial t)+(df)/(dw) (\partial w)/(\partial t)=-(df)/(ds) =-f'(s)](https://img.qammunity.org/2020/formulas/mathematics/college/9nw5xuu9if0dv0ogg4kjmd9sc6wflo6n7r.png)
then
![(\partial^(2) u )/(\partial t^(2) ) =(\partial)/(\partial t) (-f'(s))=-(d)/(ds) (f'(s))(\partial s)/(\partial t) =f''(s)](https://img.qammunity.org/2020/formulas/mathematics/college/xdqcdm3ijy69o4ibrlodw8zvlstmj6e69f.png)
we see that
![(\partial^(2) u )/( \partial x^(2) ) =f''(s)+f''(w) \\eq f''(s)=(\partial^(2) u )/(\partial t^(2) )](https://img.qammunity.org/2020/formulas/mathematics/college/ds5jqjroezynpzjp7cj0dl9g6vid4l5vyw.png)
doesn´t satisfy the wave equation.