Answer:
![x=(3)/(2) \pm i\sqrt{(11)/(4)-(e^(2) )/(3) }](https://img.qammunity.org/2020/formulas/mathematics/high-school/5ybmfb5zqe8or7fnxioq3oxnp8sr2tpwk2.png)
Explanation:
First, cancel logarithms by taking exp of both sides:
![e^{3*(x^(2)-3x+5) }=e^(2) \\ 3*(x^(2)-3x+5)=e^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4hznd06huu61zs99xkytz7a59yjbzon5rc.png)
Divide both sides by 3 and then substract 5 from both sides:
![x^(2) -3x=(e^(2) )/(3) -5](https://img.qammunity.org/2020/formulas/mathematics/high-school/y227ez3h3lipgkhjoee7kaq4j1hhn59uui.png)
Add 9/4 to both sides in order to write the left side as a square:
![x^(2) -3x+(9)/(4) =(e^(2) )/(3) -(11)/(4) \\(x-(3)/(2)) ^(2) =(e^(2) )/(3) -(11)/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/kwuls93fws1g8oqqhmv6wyghmamdpwnahr.png)
Express the right side as:
![(-1)*((11)/(4)-(e^(2) )/(3) )](https://img.qammunity.org/2020/formulas/mathematics/high-school/81qisqk3885d0gelw636q1clkqqs5s03pt.png)
Now take square root of both sides, keep in mind that:
![i=√(-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zonqc68oti56jvhhkisglqsc9z9pqyvjgo.png)
![x-(3)/(2)=\pm √(-1) *\sqrt{(11)/(4)-(e^(2) )/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/s51z2yfehauswsm935qpt9hr3ogvixoq65.png)
Finally, add 3/2 to both sides:
![x=(3)/(2) \pm i\sqrt{(11)/(4)-(e^(2) )/(3) }](https://img.qammunity.org/2020/formulas/mathematics/high-school/5ybmfb5zqe8or7fnxioq3oxnp8sr2tpwk2.png)