Answer:
x = 4 , x = 9 , x = -5
Explanation:
Given: P(x)=x³-8x²-29x+180
Find the zeros of the polynomial.
First we factor the polynomial and then set each factor to 0.
P(x)=0
Put x=4 into P(x)
![P(4)=4^3-8\cdot 4^2-29\cdot 4+180](https://img.qammunity.org/2020/formulas/mathematics/high-school/m2eeosvjvf6zxqdpr8gr5rdtay383gho9l.png)
P(4)=0
Divide the polynomial by x-4
![(x^3-8x^2-29x+180)/ (x-4)=x^2-4x-45](https://img.qammunity.org/2020/formulas/mathematics/high-school/6g8oq12l2d6xkgznwz3zqqj2arldrq8gb3.png)
![(x-4)(x^2-4x-45)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/13ksmfvru5muu0glcm2y9nwz15gjcq1kq3.png)
![(x-4)(x-9)(x+5)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/q10tq3o8h4ckh2830n4s3qfnw4eue2ovbd.png)
Set each factor to 0
x - 4 = 0 | x - 9 = 0 | x + 5 = 0
x = 4 , x = 9 , x = -5
Zeros of the polynomial, P(x), are -5,4 and 9