Answer:
m∠AYB = 85°
m∠C = 50°
Explanation:
By is the angle bisector of ∠ABC,
Therefore, m∠1 = m∠2 = 30°
m∠3 = 35°
m∠AYB + m∠YAB + m∠ABY = 180°
m∠AYB = 180° - [(m∠1 + m∠2) + m∠3]
= 180° - [(30° + 30°) + 35°]
= 180° - 95°
= 85°
m∠A + m∠B + m∠C = 180°
2(30°) + 2(35)° + m∠C = 180°
60° + 70° + m∠C = 180°
m∠C = 180° - 130°
m∠C= 50°