76.3k views
5 votes
Evaluate 5x^2 − 10x when the value of x is (2-√5)/2

User Kantharis
by
8.3k points

1 Answer

3 votes

Answer:


(5)/(4)

Explanation:

To evaluate :

5x² − 10x

value of x =
(2-\sqrt5)/(2)

Now,

substituting the value of x in the given equation, we get


5((2-\sqrt5)/(2))^2-10((2-\sqrt5)/(2))

or


5(((2-\sqrt5)^2)/(4))-5(2-\sqrt5)

taking 2 - √5 as common, we get

⇒ (2 - √5)
((5(2-\sqrt5))/(4))-5)

or

⇒ (2 - √5)
((10-5\sqrt5))/(4))-5

or

⇒ (2 - √5)
*((10-5\sqrt5-4*5)/(4))

or

⇒ (2 - √5)
*((10-5\sqrt5-20)/(4))

or

⇒ (2 - √5)
*((-10-5\sqrt5)/(4))

or


2*((-10-5\sqrt5)/(4))-\sqrt5*((-10-5\sqrt5)/(4))

or


((-10-5\sqrt5)/(2))-((-10*\sqrt5-5*5)/(4))

or


((-10-5\sqrt5)/(2))-((-10*\sqrt5-25)/(4))

or


(4*(-10-5\sqrt5)-(2*(-10*\sqrt5-25))/(2*4)

or


((-40-20\sqrt5)-(-20*\sqrt5-50))/(8)

or


((-40-20\sqrt5)+20*\sqrt5+50))/(8)

or


(10)/(8)

or


(5)/(4)

User Pcsutar
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories