76.2k views
5 votes
Evaluate 5x^2 − 10x when the value of x is (2-√5)/2

User Kantharis
by
4.9k points

1 Answer

3 votes

Answer:


(5)/(4)

Explanation:

To evaluate :

5x² − 10x

value of x =
(2-\sqrt5)/(2)

Now,

substituting the value of x in the given equation, we get


5((2-\sqrt5)/(2))^2-10((2-\sqrt5)/(2))

or


5(((2-\sqrt5)^2)/(4))-5(2-\sqrt5)

taking 2 - √5 as common, we get

⇒ (2 - √5)
((5(2-\sqrt5))/(4))-5)

or

⇒ (2 - √5)
((10-5\sqrt5))/(4))-5

or

⇒ (2 - √5)
*((10-5\sqrt5-4*5)/(4))

or

⇒ (2 - √5)
*((10-5\sqrt5-20)/(4))

or

⇒ (2 - √5)
*((-10-5\sqrt5)/(4))

or


2*((-10-5\sqrt5)/(4))-\sqrt5*((-10-5\sqrt5)/(4))

or


((-10-5\sqrt5)/(2))-((-10*\sqrt5-5*5)/(4))

or


((-10-5\sqrt5)/(2))-((-10*\sqrt5-25)/(4))

or


(4*(-10-5\sqrt5)-(2*(-10*\sqrt5-25))/(2*4)

or


((-40-20\sqrt5)-(-20*\sqrt5-50))/(8)

or


((-40-20\sqrt5)+20*\sqrt5+50))/(8)

or


(10)/(8)

or


(5)/(4)

User Pcsutar
by
4.7k points