Answer:
LHS =
= RHS =
Explanation:
Data provided in the question:
a = −1 + √3i and b = 2
to prove:
![(1)/(a+b)=(1)/(a) + (1)/(b)](https://img.qammunity.org/2020/formulas/mathematics/high-school/fvzipqp17un6x22j58r0iqvfs8ttgmd275.png)
Considering the LHS
⇒
![(1)/(a+b)](https://img.qammunity.org/2020/formulas/mathematics/high-school/grjbotjq6thjmz02g8lipkdycosiizs12a.png)
substituting the value of a and b, we get
⇒
![(1)/(−1 + \sqrt3i+2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/s00hn4ykoosq3i5itfyb6rws2lzlgkuu7m.png)
or
⇒
![(1)/(1 + \sqrt3i)](https://img.qammunity.org/2020/formulas/mathematics/high-school/k7f189q1yzmjby0akvt0qtjyqtq5aumhvi.png)
on multiplying and dividing by conjugate ( 1 - √3i )
we get
![(1)/(1 + \sqrt3i)*(1 - \sqrt3i)/(1 - \sqrt3i)](https://img.qammunity.org/2020/formulas/mathematics/high-school/r0svlj2wiau37yksyxxmb38gn93cbxiiif.png)
or
![(1 - \sqrt3i)/((1^2 - (\sqrt3i)^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hmvsliq0tx49417yf65yiapr03k3vjguvq.png)
or
(as (√i)² = -1 )
or
Now,
considering the RHS
![(1)/(a) + (1)/(b)](https://img.qammunity.org/2020/formulas/mathematics/high-school/fuy2tm2k3t0xempag3xx8whhpkeijk0j9g.png)
substituting the value of a and b, we get
⇒
![(1)/(-1 + \sqrt3i) + (1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/v2p9a59qowlfjs3vz896b0frxy3eb70jx3.png)
or
⇒
![(2*1 + ( -1 + \sqrt3i)*1)/((-1 + \sqrt3i)*2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4ytikjel2z8f49pqlu3umehcjy6d9492rp.png)
or
⇒
![(2 + ( -1 + \sqrt3i))/((-1 + \sqrt3i)*2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/51d1csmd0aqm54w7kzrfmukedech0ljhzb.png)
or
⇒
![(1 + \sqrt3i)/((-1 + \sqrt3i)*2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ws7f2atbnolguesrdjpqdd4e9arzl91hc6.png)
now,
on multiplying and dividing by conjugate ( -1 - √3i )
we get
![(1 + \sqrt3i)/((−1 + \sqrt3i)*2)*(-1 - \sqrt3i)/(-1 - \sqrt3i)](https://img.qammunity.org/2020/formulas/mathematics/high-school/gnnwjcyfsmgpsot8yey23f1bu48y5yt8lo.png)
or
![(1 + \sqrt3i)/((−1 + \sqrt3i)*2)*(-1( 1 + \sqrt3i))/(-1 - \sqrt3i)](https://img.qammunity.org/2020/formulas/mathematics/high-school/huq593r3wcmohnfex4le8pxfym6kfurwcc.png)
or
![\frac{(1 + \sqrt3i}^2*(-1){((-1)^2 - (\sqrt3i)^2)*2}](https://img.qammunity.org/2020/formulas/mathematics/high-school/90h3tvili1pwyhorl6tts8ja4l9ozto4ib.png)
or
![((1^2 + (\sqrt3i)^2+2(1)(\sqrt3i)*(-1))/((1 + 3)*2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/89otxqoerp9fapiebbi7vzzm0453ncipck.png)
or
![((1 - 3 + 2\sqrt3i)*(-1))/((4)*2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/a9w1hvwkt9i8eqk4iu5qzof0vi6tuo0d18.png)
or
![((-2 + 2\sqrt3i)*(-1))/((4)*2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/fsdw0t12t1vpzbjamn07n5q1qsohs7icod.png)
or
![(-2( 1 - 2\sqrt3i)*(-1))/((4)*2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rczh14ec6mdgn9wr5xud2qp1r69uqy34bg.png)
or
![(( 1 - 2\sqrt3i))/((4))](https://img.qammunity.org/2020/formulas/mathematics/high-school/7fus621ty793p8x4rfzu1rdpbf218bnvx8.png)
Since, LHS = RHS
hence satisfied