First of all, it might be convenient to rewrite the inequality as
![26-x^2>4x-20 \iff x^2+4x-46<0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/79gown7u1zjhtr40qrjwr375ohkkeqj584.png)
Then, we can plug the proposed value to see which one satisfies the inequality: we want the expression to evaluate to a negative value.
x=8:
![x^2+4x-46 \implies 64+32-46 = 50>0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rd9rzfpuxozilguefe8p5oykl7978qza9n.png)
x=7
![x^2+4x-46 \implies 49+28-46 = 31>0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b10dnhlrbbhlsak4hjcq9z7dmd2rtcmvn7.png)
x=6
![x^2+4x-46 \implies 36+24-46 = 14>0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uhwn44c44zv8oahg1wdho601lzis7n2qwn.png)
x=5
![x^2+4x-46 \implies 25+20-46 = -1<0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ki2rdvifxszdfxnsb4b7m11rhykrlqopyj.png)
So, the only value that returns a negative value is x = 5.