Answer:
5 miles.
Explanation:
We have been given that for a set amount of time, the distance Kirk can run is directly related to his average speed. Kirk can run 3 miles while running 6 miles per hour. We are asked to find the distance covered if his speed increases 10 miles per hour in same time.
![\text{\text{Time}}=\frac{\text{Distance}}{\text{Speed}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fza8tkohifa10kypeya41nfabdtea1g7yu.png)
![\text{\text{Time}}=\frac{3\text{ Miles}}{\frac{\text{6 miles}}{\text{Hour}}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oi7ahzrcntmajbf27e7gue9ed4a895t9lr.png)
![\text{\text{Time}}=\frac{3\text{ Miles}}{\text{6 miles}}* \text{Hour}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/66z7jim44tdtbtkfbomlawy8shllmurkys.png)
![\text{\text{Time}}=0.5 \text{Hour}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s4c5q7o408dfkl8uo6cb7q3adnrr7rb3ks.png)
Now, we need to find distance covered at a rate of 10 miles per hour in 0.5 hour.
![\text{Distance}=\text{\text{Time}}* \text{Speed}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1d90jnj1qgjr7nwgq3giltwvll6ko1zhtd.png)
![\text{Distance}=\text{\text{0.5 hour}}* \frac{\text{10 miles}}{\text{Hour}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4ays3cfz519z8z6iy6113gdd6j6xpfe884.png)
![\text{Distance}=0.5* \text{10 miles}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bj9yciat2zjaoxj72e848j2je0fwsy1a0l.png)
![\text{Distance}=5\text{ miles}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u5d17yvzuzsmxtkc9654trtoudejwcfcep.png)
Therefore, Kirk can run 5 miles in same amount of time at a rate of 10 miles per hour.