Answer:
a. 0.9931
b. 0.3423
c. 0.3907
d. 0.2670
e. 3.15
f. 1.0796
Explanation:
The probability of the variable that said the number of left-handed people follow a Binomial distribution, so the probability is:
![P(x)=nCx*p^(x)*(1-p)^(n-x)](https://img.qammunity.org/2020/formulas/mathematics/college/mlgfvmkl8zz4x09fn9r0fnyat2bu34t97t.png)
nCx is calculated as:
![nCx=(n!)/(x!(n-x)!)](https://img.qammunity.org/2020/formulas/mathematics/high-school/c28apsqdjo0pjm5pmht7skp1itgmqiz71f.png)
Where x is the number of left-handed people, n is the number of people selected at random and p is the probability that a person is left--handed. So P(x) is:
![P(x)=5Cx*0.63^(x)*(1-0.63)^(5-x)](https://img.qammunity.org/2020/formulas/mathematics/college/80k50enrsts11uagw4m1y4hng1gblgwfqa.png)
Then the probabilities P(0), P(1), P(2), P(3), P(4) and P(5) are:
![P(0)=5C0*0.63^(0)*(1-0.63)^(5-0)=0.0069](https://img.qammunity.org/2020/formulas/mathematics/college/9g7gbjibfumfmf8zfnz3xfb8ryjjmhj0sg.png)
![P(1)=5C1*0.63^(1)*(1-0.63)^(5-1)=0.0590](https://img.qammunity.org/2020/formulas/mathematics/college/bjk2c6q2b5d09dp89fpmgwsas3nres8dij.png)
![P(2)=5C2*0.63^(2)*(1-0.63)^(5-2)=0.2011](https://img.qammunity.org/2020/formulas/mathematics/college/4mflhb88ezblt9x8o0bzc2lbpmpkllwafe.png)
![P(3)=5C3*0.63^(3)*(1-0.63)^(5-3)=0.3423](https://img.qammunity.org/2020/formulas/mathematics/college/xmx29frucb3eqif6d2pk5yrtfk4j5jqgax.png)
![P(x)=5C4*0.63^(4)*(1-0.63)^(5-4)=0.2914](https://img.qammunity.org/2020/formulas/mathematics/college/w3byujyavgmabxdcoug83e0wur41zjxwrv.png)
![P(x)=5C5*0.63^(5)*(1-0.63)^(5-5)=0.0993](https://img.qammunity.org/2020/formulas/mathematics/college/5h01dim63jf65xldio3rhzyu8ezcin0jf4.png)
Then, the probability P(x≥1) that there are some lefties among the 5 people is:
P(x≥1) = P(1) + P(2) + P(3) + P(4) + P(5)
P(x≥1) = 0.0590 + 0.2011 + 0.3423 + 0.2914 + 0.0993 = 0.9931
The probability P(3) that there are exactly 3 lefties in the group is:
P(3) = 0.3423
The probability P(x≥4) that there are at least 4 lefties in the group is:
P(x≥4) = P(4) + P(5) = 0.2914 + 0.0993 = 0.3907
The probability P(x≤2) that there are no more than 2 lefties in the group is:
P(x≤2) = P(0) + P(1) + P(2) = 0.0069 + 0.0590 + 0.2011 = 0.2670
On the other hand, the expected value E(x) and standard deviation S(x) of the variable that follows a binomial distribution is:
![E(x)=np=5(0.63)=3.15\\S(x)=√(np(1-p))=√(5(0.63)(1-0.63))=1.0796](https://img.qammunity.org/2020/formulas/mathematics/college/ukf8oft5p3jfb96gll2bmg8a9cvxtonbtu.png)