4.2k views
1 vote
If a proton and an electron are released when they are 4.00 x 10^-10 m apart, find the initial acceleration of each of them.

User Jaypb
by
6.1k points

2 Answers

5 votes

Answer:

(A) Acceleration of electron
a=(1.44* 10^(-9))/(9.11* 10^(-31))=0.158* 10^(22)m/sec^2

(b) Acceleration of proton
a=(1.44* 10^(-9))/(1.67* 10^(-27))=0.8622* 10^(18)m/sec^2

Step-by-step explanation:

We have given distance between proton
r=4* 10^(-10)m

Charge on proton and charge on electron
q=1.6* 10^(-19)

According to coulombs law force between two charge
F=(1)/(4\pi \epsilon _0)(q_1q_2)/(r^2)=(Kq_1q_!)/(r^2)=(9* 10^9* 1.6* 10^(-19)* 1.6* 10^(-19))/((4* 10^(-10))^2)=1.44* 10^(-9)N

Mass of electron
m=9.11* 10^(-31)kg

So acceleration of electron
a=(1.44* 10^(-9))/(9.11* 10^(-31))=0.158* 10^(22)m/sec^2

Mass of proton
m=1.67* 10^(-27)kg

So acceleration of proton
a=(1.44* 10^(-9))/(1.67* 10^(-27))=0.8622* 10^(18)m/sec^2

User Hughgo
by
5.8k points
3 votes

Answer:

For proton


a=8.8* 10^(17)\ m/s^2

For electron


a=1.5* 10^(21)\ m/s^2

Step-by-step explanation:

We know that

The mass of electron


m=9.1* 10^(-31)\ kg

The mass of proton


m=1.67* 10^(-27)\ kg

Charge on electron and proton

q₁=q₂=q


q=1.6* 10^(-19)\ C

Electrostatics force


F=K(q_1q_2)/(r^2)

Now by putting the values


F=9* 10^9* (1.6* 10^(-19)* 1.6* 10^(-19))/((4* 10^(-10))^2)


F=1.44* 10^(-9)\ N

For proton

F = m a

a =F/m


a=(1.4* 10^(-9))/(1.67* 10^(-27))\ m/s^2


a=8.8* 10^(17)\ m/s^2

For electron


a=(1.4* 10^(-9))/(9.1* 10^(-31))\ m/s^2


a=1.5* 10^(21)\ m/s^2

User Sherann
by
6.0k points