Answer:
the value of k is 6 and 12.
Explanation:
The differential equation is y" – 18y' + 72y = 0.
A solution of this differential equation is
![y(x)=e^(kt)](https://img.qammunity.org/2020/formulas/mathematics/college/3m50garh9orz20mgybimqiz3c9il0ko5wa.png)
The first derivative is
![y'(x)=ke^(kt)](https://img.qammunity.org/2020/formulas/mathematics/college/tb4012s2wtzi47j3rj3j8nyqud0pvtek1d.png)
The second derivative is
![y''(x)=k^2e^(kt)](https://img.qammunity.org/2020/formulas/mathematics/college/yxy3e5xzzm0jjjjwu665mjebg2x602k1ze.png)
Substituting these values in the given DE
![k^2e^(kt)-18ke^(kt)+72e^(kt)=0](https://img.qammunity.org/2020/formulas/mathematics/college/3hockr6f9kusygpuwfy9vkcgaw7p0nxzlt.png)
Factor out the GCF
![e^(kt)(-k^2-18k+72)=0](https://img.qammunity.org/2020/formulas/mathematics/college/sw3nwebah92p37b27ahktkovzxvdg2gzh2.png)
The function
can never be zero. Hence, we have
![k^2-18k+72=0\\\\k^2-12k-6k+72=0\\\\k(k-12)-6(k-12)=0\\\\(k-12)(k-6)=0\\\\k=6,12](https://img.qammunity.org/2020/formulas/mathematics/college/i5ay8e270tvm4q8kc08lrhklny0elzt2u2.png)
Therefore, the value of k is 6 and 12.
Smaller value = 6
Larger value = 12