Answer:
किसी पदार्थ की ऊष्मीय चालकता को प्रति इकाई तापमान अंतर के प्रति इकाई क्षेत्र की सामग्री की एक इकाई मोटाई के माध्यम से गर्मी हस्तांतरण की दर के रूप में परिभाषित किया गया है। किसी पदार्थ की ऊष्मीय चालकता इस बात का माप है कि उस पदार्थ में कितनी तीव्र ऊष्मा प्रवाहित होगी। थर्मल चालकता के लिए एक बड़ा मूल्य इंगित करता है कि सामग्री एक अच्छा गर्मी कंडक्टर है, और एक कम मूल्य इंगित करता है कि सामग्री एक खराब गर्मी कंडक्टर या इन्सुलेटर है। कमरे के तापमान पर शुद्ध तांबे की तापीय चालकता 401 W / m है। K, जो इंगित करता है कि एक 1m मोटी तांबे की दीवार 401 W / m 2 की दर से गर्मी का संचालन करेगीप्रति दीवार के क्षेत्र का अंतर दीवार के पार तापमान अंतर। चित्रा 2.3 सामान्य तापमान और दबाव में पदार्थ के विभिन्न राज्यों के लिए तापीय चालकता की सीमा को दर्शाता है। एक ठोस की ऊष्मीय चालकता, गैस की तुलना में चार गुना अधिक परिमाण की हो सकती है। यह प्रवृत्ति काफी हद तक दोनों राज्यों के बीच अंतर-संबंधी अंतर के कारण है।
ठोस राज्य
सामग्रियों के आधुनिक दृष्टिकोण में, एक ठोस में मुक्त इलेक्ट्रॉनों और एक आवधिक व्यवस्था में बाध्य परमाणुओं का समावेश हो सकता है जिसे जाली कहा जाता है। तदनुसार, थर्मल ऊर्जा का परिवहन दो प्रभावों के कारण होता है: मुक्त इलेक्ट्रॉनों का पलायन और जाली कंपन तरंगें। ये प्रभाव योगात्मक हैं, जैसे कि तापीय चालकता k , इलेक्ट्रॉनिक घटक k e और समरूप घटक k l का योग है
k = k e + k l
(2.7)
सामान्य तापमान और दबाव में विभिन्न राज्यों के लिए थर्मल चालकता की 2.3 रेंज चित्रा
k e विद्युत प्रतिरोधकता के व्युत्क्रमानुपाती होता है । शुद्ध धातुओं के लिए, जो कम के हैं , k e , k l की तुलना में बहुत बड़ा है । इसके विपरीत, मिश्र धातुओं के लिए, जो कि काफी बड़े होते हैं , k l से k का योगदान अब नगण्य नहीं है। गैर-धात्विक ठोस के लिए, k को मुख्य रूप से k l द्वारा निर्धारित किया जाता है , जो कि जाली के परमाणुओं के बीच परस्पर क्रिया की आवृत्ति पर निर्भर करता है। जाली व्यवस्था की नियमितता का k l पर महत्वपूर्ण प्रभाव पड़ता है , क्रिस्टलीय (सुव्यवस्थित) सामग्री की तरह, क्वार्ट्ज जैसी सामग्री में कांच जैसी अनाकार सामग्री की तुलना में अधिक ऊष्मीय चालकता होती है। वास्तव में, क्रिस्टलीय के लिए, गैर-धात्विक ठोस जैसे कि हीरा और बेरिलियम ऑक्साइड, k l काफी बड़े हो सकते हैं, जो कि अच्छे कंडक्टरों से जुड़े k के मूल्यों से अधिक होते हैं , जैसे कि एल्यूमीनियम।
इन्सुलेशन सिस्टम
थर्मल इंसुलेशन में कम तापीय चालकता वाली सामग्री शामिल होती है, जो एक कम प्रणाली वाली तापीय चालकता को प्राप्त करने के लिए संयुक्त होती है। फाइबर-, पाउडर-, फ्लेक-टाइप इंसुलेशन में, ठोस पदार्थ को पूरी तरह से एक एयर स्पेस में फैलाया जाता है। ऐसी प्रणालियों को एक प्रभावी तापीय चालकता की विशेषता होती है , जो ठोस पदार्थ की तापीय चालकता और सतह विकिरणकारी गुणों पर निर्भर करती है, साथ ही साथ हवा या शून्य स्थान की प्रकृति और मात्रात्मक अंश। प्रणाली का एक विशेष पैरामीटर इसकी थोक घनत्व (ठोस द्रव्यमान / कुल मात्रा) है, जो उस तरीके पर दृढ़ता से निर्भर करता है जिसमें ठोस सामग्री परस्पर जुड़ी हुई है।
द्रवित अवस्था
चूंकि इंटरमॉलिक्युलर स्पेसिंग बहुत बड़ी होती है और अणु की गति ठोस अवस्था की तुलना में द्रव अवस्था के लिए अधिक यादृच्छिक होती है, इसलिए थर्मल एनर्जी ट्रांसपोर्ट कम प्रभावी होता है। इसलिए गैसों और तरल पदार्थों की तापीय चालकता ठोस पदार्थों की तुलना में छोटी होती है।
ऊष्मीय विसरणशीलता
गर्मी हस्तांतरण समस्याओं के हमारे विश्लेषण में, पदार्थ के कई गुणों का उपयोग करना आवश्यक होगा। इन गुणों को आम तौर पर थर्मोफिजिकल गुणों के रूप में संदर्भित किया जाता है और इसमें दो अलग-अलग श्रेणियां, परिवहन और थर्मोडायनामिक गुण शामिल होते हैं। परिवहन गुणों में प्रसार दर गुणांक जैसे कि के, थर्मल चालकता (गर्मी हस्तांतरण के लिए), और , गतिज चिपचिपापन (गति हस्तांतरण के लिए) शामिल हैं। दूसरी ओर, थर्मोडायनामिक गुण, एक प्रणाली के संतुलन की स्थिति से संबंधित हैं। घनत्व ( ) और विशिष्ट ऊष्मा ( C p ) दो ऐसे गुण हैं जिनका उपयोग थर्मोडायनामिक विश्लेषण में बड़े पैमाने पर किया जाता है। उत्पाद सी पीआम तौर पर वॉल्यूमेट्रिक ताप क्षमता को कहा जाता है , जो थर्मल ऊर्जा को स्टोर करने के लिए एक सामग्री की क्षमता को मापता है। क्योंकि बड़े घनत्व के पदार्थों को आमतौर पर छोटे विशिष्ट हीट्स, कई ठोस और तरल पदार्थों की विशेषता होती है, जो कि बहुत अच्छा ऊर्जा भंडारण मीडिया है, इसमें तुलनीय ताप क्षमता होती है। हालांकि उनकी बहुत छोटी घनत्व के कारण, गैसें थर्मल ऊर्जा भंडारण के लिए खराब अनुकूल हैं।
ऊष्मा अंतरण विश्लेषण में, ऊष्मा चालकता के लिए तापीय चालकता का अनुपात एक महत्वपूर्ण गुण है जिसे तापीय विवर्तनशीलता कहा जाता है , जिसमें m 2 / s की इकाइयाँ होती हैं ।
(2.8)
यह तापीय ऊर्जा को संग्रहीत करने की क्षमता के सापेक्ष तापीय ऊर्जा का संचालन करने के लिए एक सामग्री की क्षमता को मापता है। बड़ी की सामग्री उनके थर्मल वातावरण में बदलाव के लिए जल्दी से प्रतिक्रिया देगी, जबकि छोटे की सामग्री अधिक सुस्त प्रतिक्रिया देगी, एक नई संतुलन स्थिति तक पहुंचने में अधिक समय लेगी।