Answer:
If
then
and
![mn=(2)/(3)+p=\left((2)/(3)+p\right)\cdot 1,\ \ m+n=(5)/(3)+p](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4qw7c6xkm8ycnias5wdi9fkc48v4qh8cl8.png)
Explanation:
Solve two inequalities for x.
1.
![2,018x-p<2,020x+p](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tle9y82dbhbxx9jyp572pehwit95x3g0ms.png)
Separate terms with x and without x into two sides:
![2,018x-2,020x<p+p\\ \\-2x<2p](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kdwweejbso4p6gj2va5gbld2eyz8do29as.png)
Multiply by -1:
![2x>-2p\\ \\x>-p](https://img.qammunity.org/2020/formulas/mathematics/middle-school/od4l7rdgzqf5fes8toicf1f0hi3mw9orut.png)
2.
![7x+3p<10x-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/377ymi3tx3u3bxftl35asvpsepwstun1x9.png)
Separate terms with x and without x into two sides:
![7x-10x<-2-3p\\ \\-3x<-2-3p](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w0guyj0t0rnrb5mjambc6vavrpil46qt0f.png)
Multiply by -1:
![3x>2+3p\\ \\x>(2)/(3)+p](https://img.qammunity.org/2020/formulas/mathematics/middle-school/41if505ut7mbaga47thjrh4kgsu18rjb8a.png)
Find the largest set of x values satisfying both inequalities:
![x>-p\\ \\x>(2)/(3)+p](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r4cqqklp3puey1v5lnu0hn6d0wnvi8liy6.png)
If
then
and
In this case both m and n are negative.
If
then
and
![mn=(2)/(3)+p=\left((2)/(3)+p\right)\cdot 1,\ \ m+n=(5)/(3)+p](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4qw7c6xkm8ycnias5wdi9fkc48v4qh8cl8.png)
If
then
and
![mn=(1)/(3)=(1)/(3)\cdot 1,\ \ m+n=(4)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o9dfpq4a597qs6uj5kbcavnpfsm11365al.png)