69.2k views
2 votes
Factorise x^2-3x+10=0

User Manikal
by
5.2k points

2 Answers

4 votes

☯ Given


\\ormalsize\sf\ x^2 - 3x - 10 x </p><p>

☯ To find


\\ormalsize\sf\ Roots \: of \: Equation


\underline{\bigstar\:\textsf{By \: using \: Quadratic \: formula:}}


\\ormalsize\ : \implies\sf\ x = (-b \pm √(b^2 - 4ac))/(2a)


\\ormalsize\ : \implies\sf\ x = (-(-3) \pm √((3)^2 - 4 *\ 1 *\ (-10)))/(2 *\ 1)


\\ormalsize\ : \implies\sf\ x = (3 \pm √(9 - (-40)))/(2)


\\ormalsize\ : \implies\sf\ x = (3 \pm √(9 + 40))/(2)


\\ormalsize\ : \implies\sf\ x = (3 \pm √(49))/(2)


\\ormalsize\ : \implies\sf\ x = (3 \pm 7)/(2)


\\ormalsize\ : \implies\sf\ x = ( 3 + 7)/(2) \: \: or \: \: (3 - 7)/(2)


\\ormalsize\ : \implies\sf\ x = \frac{\cancel{10}}{\cancel{2}} \: \: or \: \: \frac{\cancel{-4}}{\cancel{2}}


\\ormalsize\ : \implies\sf\ x = 5 \: \: or \: \: -2


\\ormalsize\ : \implies{\underline{\boxed{\sf \red{ x = 5 \: \: or \: \: -2}}}}


\therefore\:\underline{\textsf{Hence, \: the \: value \: of \: x \: is}{\textbf{\: 5 \: or \: -2}}}


\underline{\bigstar\:\textsf{By \: using \: Middle \: term \: factorization:}}


\\ormalsize\dashrightarrow\sf\ x^2 - 3x - 10 = 0


\\ormalsize\dashrightarrow\sf\ x^2 - 5x + 2x - 10 = 0


\\ormalsize\dashrightarrow\sf\ x(x - 5) + 2(x - 5) = 0


\\ormalsize\dashrightarrow\sf\ (x - 5)(x + 2) = 0


\\ormalsize\dashrightarrow\sf\ (x - 5) = 0 \: or \: (x + 2) = 0


\\ormalsize\dashrightarrow\sf\ x = 0 + 5 \: or \: x = 0 - 2


\\ormalsize\dashrightarrow\sf\ x = 5 \: or \: x = -2


\\ormalsize\dashrightarrow{\underline{\boxed{\sf \red{x = 5 \: or \: -2}}}}


\therefore\:\underline{\textsf{Hence, \: the \: value \: of \: x \: is}{\textbf{\: 5 \: or \: -2}}}

User Matthijs Mennens
by
5.7k points
4 votes
(x-5)(x+2)=0
roots: x=5 and x= -2
see attached photo for steps
Factorise x^2-3x+10=0-example-1
User Dallonsi
by
5.6k points