69.2k views
2 votes
Factorise x^2-3x+10=0

User Manikal
by
7.5k points

2 Answers

4 votes

☯ Given


\\ormalsize\sf\ x^2 - 3x - 10 x </p><p>

☯ To find


\\ormalsize\sf\ Roots \: of \: Equation


\underline{\bigstar\:\textsf{By \: using \: Quadratic \: formula:}}


\\ormalsize\ : \implies\sf\ x = (-b \pm √(b^2 - 4ac))/(2a)


\\ormalsize\ : \implies\sf\ x = (-(-3) \pm √((3)^2 - 4 *\ 1 *\ (-10)))/(2 *\ 1)


\\ormalsize\ : \implies\sf\ x = (3 \pm √(9 - (-40)))/(2)


\\ormalsize\ : \implies\sf\ x = (3 \pm √(9 + 40))/(2)


\\ormalsize\ : \implies\sf\ x = (3 \pm √(49))/(2)


\\ormalsize\ : \implies\sf\ x = (3 \pm 7)/(2)


\\ormalsize\ : \implies\sf\ x = ( 3 + 7)/(2) \: \: or \: \: (3 - 7)/(2)


\\ormalsize\ : \implies\sf\ x = \frac{\cancel{10}}{\cancel{2}} \: \: or \: \: \frac{\cancel{-4}}{\cancel{2}}


\\ormalsize\ : \implies\sf\ x = 5 \: \: or \: \: -2


\\ormalsize\ : \implies{\underline{\boxed{\sf \red{ x = 5 \: \: or \: \: -2}}}}


\therefore\:\underline{\textsf{Hence, \: the \: value \: of \: x \: is}{\textbf{\: 5 \: or \: -2}}}


\underline{\bigstar\:\textsf{By \: using \: Middle \: term \: factorization:}}


\\ormalsize\dashrightarrow\sf\ x^2 - 3x - 10 = 0


\\ormalsize\dashrightarrow\sf\ x^2 - 5x + 2x - 10 = 0


\\ormalsize\dashrightarrow\sf\ x(x - 5) + 2(x - 5) = 0


\\ormalsize\dashrightarrow\sf\ (x - 5)(x + 2) = 0


\\ormalsize\dashrightarrow\sf\ (x - 5) = 0 \: or \: (x + 2) = 0


\\ormalsize\dashrightarrow\sf\ x = 0 + 5 \: or \: x = 0 - 2


\\ormalsize\dashrightarrow\sf\ x = 5 \: or \: x = -2


\\ormalsize\dashrightarrow{\underline{\boxed{\sf \red{x = 5 \: or \: -2}}}}


\therefore\:\underline{\textsf{Hence, \: the \: value \: of \: x \: is}{\textbf{\: 5 \: or \: -2}}}

User Matthijs Mennens
by
8.5k points
4 votes
(x-5)(x+2)=0
roots: x=5 and x= -2
see attached photo for steps
Factorise x^2-3x+10=0-example-1
User Dallonsi
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories