Answer:
Answered
Explanation:
![a_0= 736 billion](https://img.qammunity.org/2020/formulas/mathematics/high-school/1ewe52otv3kbitg6ymzwdwh2y00j2gynq9.png)
r= 1.12%= 0.0112
a) let a_n represents population n years after 2017
each year population grows by 1.12 %. Thus the population is the population of the previous year multiplied by a factor of 1.12%.
that is
![a_n =a_(n-1) +1.0112a_(n-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/90pwk8a8q1s9n7b04ft5fpskadfel35abj.png)
![a_n =1.0112a_(n-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xadybdhdy5o6rsoqifp67a0tf2worqx5y7.png)
b) given
![a_n =1.0112a_(n-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xadybdhdy5o6rsoqifp67a0tf2worqx5y7.png)
![a_0= 736 billion](https://img.qammunity.org/2020/formulas/mathematics/high-school/1ewe52otv3kbitg6ymzwdwh2y00j2gynq9.png)
we successively apply the recurrence relation:
a_n= 1.0112a_n-1 = 1.0112^1a_n-1
![1.0112(1.0112a^(n-2))= 1.0112^2 a_(n-2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/uqwpyyn7gvzwey1e7zdbbd5idk9tkshrra.png)
![1.0112^2(1.0112a^(n-3))= 1.0112^3 a_(n-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hvjwtnsqr6byxmhas3xi2h954d83ede42y.png)
![1.0112^3(1.0112a^(n-4))= 1.0112^4 a_(n-4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ky57sxyhn3glr8zdks9qfosh62pbdfzc27.png)
.......................
=1.0112^na_n-n
=7.6×1.0112^n
c) the population of the world be in 2050
n=33 years
=7.6×1.0112^33
=10.975 billion