Answer:
(a) Magnitude of force is 262.51 N
(b) Angle with East direction is
![-14.75^(o)](https://img.qammunity.org/2020/formulas/physics/high-school/wi6pci4uq02a6use494og7zut2klg1ymym.png)
Step-by-step explanation:
Force by Jack in vector form
Force by Jill in Vector form is given by
![\begin{array}{c}\\{\overrightarrow F _2} = 86.5{\rm{ N }}\cos {\rm{4}}{{\rm{5}}^{\rm{o}}}\left( {\hat i} \right) + 86.5{\rm{ N }}\sin {\rm{4}}{{\rm{5}}^{\rm{o}}}\left( {\widehat j} \right)\\\\ = 61.16{\rm{ N}}\left( {\hat i} \right) + 61.16{\rm{ N}}\left( {\widehat j} \right)\\\end{array}](https://img.qammunity.org/2020/formulas/physics/high-school/14pr56ia21qyjedc8bviwlc825fswi0yu9.png)
Force by Jane is
![\begin{array}{c}\\{\overrightarrow F _3} = 181{\rm{ N }}\cos {\rm{4}}{{\rm{5}}^{\rm{o}}}\left( {\hat i} \right) + 181{\rm{ N }}\sin {\rm{4}}{{\rm{5}}^{\rm{o}}}\left( { - \widehat j} \right)\\\\ = 128{\rm{ N}}\left( {\hat i} \right) + 128{\rm{ N}}\left( { - \widehat j} \right)\\\end{array}](https://img.qammunity.org/2020/formulas/physics/high-school/7snrku3u0mz35ugmdc4jlx03y6ypmzncrx.png)
Net force is:
![\overrightarrow F = {\overrightarrow F _1} + {\overrightarrow F _2} + {\overrightarrow F _3}](https://img.qammunity.org/2020/formulas/physics/high-school/3gbw66rr5kb3z63hlfm4rmwms3twwcmgji.png)
Hence
![\begin{array}{c}\\\overrightarrow F = 64.7{\rm{ N}}\left( {\hat i} \right) + 61.16{\rm{ N}}\left( {\hat i} \right) + 61.16{\rm{ N}}\left( {\widehat j} \right) + 128{\rm{ N}}\left( {\hat i} \right) + 128{\rm{ N}}\left( { - \widehat j} \right)\\\\ = 253.86{\rm{ N}}\left( {\hat i} \right) - 66.84{\rm{ N}}\left( {\widehat j} \right)\\\end{array}](https://img.qammunity.org/2020/formulas/physics/high-school/tzgxyuajgbpfxsvi67z5esuwmmit18doyv.png)
The net force will be given by
![F = \sqrt {{{\left( {{F_x}} \right)}^2} + {{\left( {{F_y}} \right)}^2}](https://img.qammunity.org/2020/formulas/physics/high-school/aex7ke8l5jvhoeisi1z0da1ryxzg7x4kxq.png)
Since
and
![F_(y)=-66.84N](https://img.qammunity.org/2020/formulas/physics/high-school/vuns9nxi6kd6h2k6qf1bpfgmnd0ancaiyg.png)
![\begin{array}{c}\\F = \sqrt {{{\left( {253.86{\rm{ N}}} \right)}^2} + {{\left( { - 66.84{\rm{ N}}} \right)}^2}} \\\\ = {\bf{262.51 N}}\\\end{array}](https://img.qammunity.org/2020/formulas/physics/high-school/b0fp0nnpr73hlhvi9ghzkbv9daeg5f02hu.png)
The direction of net force is:
![\theta = {\tan ^( - 1)}\left {\frac{{{F_y}}}{{{F_x}}}}](https://img.qammunity.org/2020/formulas/physics/high-school/7t3tbat04tsx6x9i3ig10ij2653nt9h3mx.png)
Since
and
![\begin{array}{c}\\\theta = {\tan ^( - 1)}\left( {\frac{{ - 66.84{\rm{ N}}}}{{253.86{\rm{ N}}}}} \right)\\\\ = {\tan ^( - 1)}\left( { - 0.2633} \right)\\\\ = {\bf{ - 14}}{\bf{.7}}{{\bf{5}}^{\bf{o}}}\\\end{array}](https://img.qammunity.org/2020/formulas/physics/high-school/le1t86eq33f3ol0w5o3xxiinxhh3akxt89.png)
The angle with East direction is
![-14.75^(o)](https://img.qammunity.org/2020/formulas/physics/high-school/wi6pci4uq02a6use494og7zut2klg1ymym.png)
Net force exerted on the donkey is in the south-east direction. So, the angle of net force from the east direction is
and it is
from the south.