Answer:
q=39.15 W/m²
Step-by-step explanation:
We know that
Thermal resistance due to conductivity given as
R=L/KA
Thermal resistance due to heat transfer coefficient given as
R=1/hA
Total thermal resistance

Now by putting the values


We know that
Q=ΔT/R


So heat transfer per unit volume is 39.15 W/m²
q=39.15 W/m²