218k views
5 votes
Which is equivalent to 64 Superscript one-fourth?

2 RootIndex 4 StartRoot 4 EndRoot

4

16

16 RootIndex 4 StartRoot 4 EndRoot

2 Answers

1 vote

Answer:

2 RootIndex 4 StartRoot 4 EndRoot

Explanation:

we have


64^{(1)/(4)}

Decompose the number 64 in prime factors


64=2^(6)=2^(4)2^(2)

substitute


64^{(1)/(4)}=(2^(4)2^(2))^{(1)/(4)}=2^{(4)/(4)}2^{(2)/(4)}=2\sqrt[4]{4}

User Pteofil
by
5.8k points
3 votes

Answer:

Option 1 -
64^{(1)/(4)}=2\sqrt[4]{4}

Explanation:

Given : Expression 64 Superscript one-fourth i.e.
64^{(1)/(4)}

To find : Which is equivalent to expression ?

Solution :

Step 1 - Write the expression,


64^{(1)/(4)}

Step 2 - Factor the term 64,


=(2* 2* 2* 2* 2* 2)^{(1)/(4)}


=(2^6)^{(1)/(4)}


=(2^4\cdot 2^2)^{(1)/(4)}

Step 3 - Apply exponent rule,
(x^a)^{(1)/(b)}=x^{(a)/(b)}


=(2)^{(4)/(4)}\cdot (2)^{(2)/(4)}


=(2)^(1)\cdot (2)^{(2)/(4)}


=2\cdot 4^{(1)/(4)}


=2\sqrt[4]{4}

Therefore,
64^{(1)/(4)}=2\sqrt[4]{4}

So, Option 1 is correct.

User Kano
by
6.0k points