155k views
4 votes
If 180° < α < 270°, cos⁡ α = −817, 270° < β < 360°, and sin⁡ β = −45, what is cos⁡ (α + β)?

User Rasmus Kaj
by
5.3k points

1 Answer

5 votes

Answer:


cos(\alpha+\beta)=-(84)/(85)

Explanation:

we know that


cos(\alpha+\beta)=cos(\alpha)*cos(\beta)-sin(\alpha)*sin(\beta)

Remember the identity


cos^(2) (x)+sin^2(x)=1

step 1

Find the value of
sin(\alpha)

we have that

The angle alpha lie on the III Quadrant

so

The values of sine and cosine are negative


cos(\alpha)=-(8)/(17)

Find the value of sine


cos^(2) (\alpha)+sin^2(\alpha)=1

substitute


(-(8)/(17))^(2)+sin^2(\alpha)=1


sin^2(\alpha)=1-(64)/(289)


sin^2(\alpha)=(225)/(289)


sin(\alpha)=-(15)/(17)

step 2

Find the value of
cos(\beta)

we have that

The angle beta lie on the IV Quadrant

so

The value of the cosine is positive and the value of the sine is negative


sin(\beta)=-(4)/(5)

Find the value of cosine


cos^(2) (\beta)+sin^2(\beta)=1

substitute


(-(4)/(5))^(2)+cos^2(\beta)=1


cos^2(\beta)=1-(16)/(25)


cos^2(\beta)=(9)/(25)


cos(\beta)=(3)/(5)

step 3

Find cos⁡ (α + β)


cos(\alpha+\beta)=cos(\alpha)*cos(\beta)-sin(\alpha)*sin(\beta)

we have


cos(\alpha)=-(8)/(17)


sin(\alpha)=-(15)/(17)


sin(\beta)=-(4)/(5)


cos(\beta)=(3)/(5)

substitute


cos(\alpha+\beta)=-(8)/(17)*(3)/(5)-(-(15)/(17))*(-(4)/(5))


cos(\alpha+\beta)=-(24)/(85)-(60)/(85)


cos(\alpha+\beta)=-(84)/(85)

User Agorenst
by
5.1k points