Answer:
![cos(\alpha+\beta)=-(84)/(85)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r63zyostja08hzwcqd3h8ostoo1586xfja.png)
Explanation:
we know that
![cos(\alpha+\beta)=cos(\alpha)*cos(\beta)-sin(\alpha)*sin(\beta)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y41iapg67x2lh7qbzn96n6csjs3xefz84e.png)
Remember the identity
![cos^(2) (x)+sin^2(x)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u7557n90cllqrh3yn7zuvcu9j82dwys8x7.png)
step 1
Find the value of
![sin(\alpha)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ql5ekvq23aezfc45bw7ogjwihw33gmh896.png)
we have that
The angle alpha lie on the III Quadrant
so
The values of sine and cosine are negative
![cos(\alpha)=-(8)/(17)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dwmqtjv8984jyfvvwzd2n1lmeechlzhchl.png)
Find the value of sine
![cos^(2) (\alpha)+sin^2(\alpha)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e3mb8wy16zhqls5e2dqlf5v0pd8i18orbd.png)
substitute
![(-(8)/(17))^(2)+sin^2(\alpha)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fbhocljxqr5amyccco93jaro1t2cqn0cw3.png)
![sin^2(\alpha)=1-(64)/(289)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/by0l7enfsdphn62ff4kjmkm6iuyck3yrh7.png)
![sin^2(\alpha)=(225)/(289)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k1y7yrnp8ur5okqv5gfvet5b0szsw92qd8.png)
![sin(\alpha)=-(15)/(17)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pr7yhdmny1iiz4jw9bld6w7vq4dy53oz9g.png)
step 2
Find the value of
![cos(\beta)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qao2zhwo1a8f742c9ep7sdkqa19nni9cu0.png)
we have that
The angle beta lie on the IV Quadrant
so
The value of the cosine is positive and the value of the sine is negative
![sin(\beta)=-(4)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ftwtsd3lqnhnt59pjdqxlux6yxjdfajfkd.png)
Find the value of cosine
![cos^(2) (\beta)+sin^2(\beta)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k19ivqzfyjim083694dqxs4fohgupjpwsa.png)
substitute
![(-(4)/(5))^(2)+cos^2(\beta)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/auxnoj99xlvyhn5a127xonf8wd1h24vric.png)
![cos^2(\beta)=1-(16)/(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4znr1gyif5omsuzmz0y3a0c210l6rhvbkx.png)
![cos^2(\beta)=(9)/(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zt1fco54698y9mv4d0tt0q321tybs0se1k.png)
![cos(\beta)=(3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3pt4za9avs7hsdirlc64c5nck55ynx7r60.png)
step 3
Find cos (α + β)
![cos(\alpha+\beta)=cos(\alpha)*cos(\beta)-sin(\alpha)*sin(\beta)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y41iapg67x2lh7qbzn96n6csjs3xefz84e.png)
we have
![cos(\alpha)=-(8)/(17)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dwmqtjv8984jyfvvwzd2n1lmeechlzhchl.png)
![sin(\alpha)=-(15)/(17)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pr7yhdmny1iiz4jw9bld6w7vq4dy53oz9g.png)
![sin(\beta)=-(4)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ftwtsd3lqnhnt59pjdqxlux6yxjdfajfkd.png)
![cos(\beta)=(3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3pt4za9avs7hsdirlc64c5nck55ynx7r60.png)
substitute
![cos(\alpha+\beta)=-(8)/(17)*(3)/(5)-(-(15)/(17))*(-(4)/(5))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lig57hu4mj6m9x1xat41raea5xwxzlgsxe.png)
![cos(\alpha+\beta)=-(24)/(85)-(60)/(85)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pj38740x15ll9f82zf3gbnecvjzkyvff69.png)
![cos(\alpha+\beta)=-(84)/(85)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r63zyostja08hzwcqd3h8ostoo1586xfja.png)