Answer:
Option B and C
Explanation:
We are given that
1.
![y=(1)/(3)x^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i8zfcjt8oworsswugqydbt4jwuhump0y18.png)
Differentiate w.r.t x
![(dy)/(dx)=(2)/(3)x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8jtfio5wvkac6atigcjvouxhhnl5a30k8f.png)
By using the formula
![(dx^n)/(dx)=nx^(n-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fpl5wg9t4hmpr9k6qha3k5t5ct19w6uxdp.png)
Rate of change of function depend on x. Hence, it is not constant.
2.
![y=2x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qeikkehr3tck2vx09s7uvb1jwawqh078s6.png)
![(dy)/(dx)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vul5clmabdyc1h5ifzkbyqltnnhqbp27bh.png)
The rate of change of the function does not vary wit x.
Hence, it stays the same.
3.
![y=-7x+9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aepmy0lzuku6gzji0559mnor78yqaoh9kk.png)
![(dy)/(dx)=-7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z85rvvk8zw1u4ossnkkevgwoakdg2mh83t.png)
The rate of change of the function does not vary wit x.
Hence, it stays the same.
4.
![y=x^2+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dg1wbyghv7h0f3a7i77oqqfst0ys2gsbrh.png)
![(dy)/(dx)=2x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fn43p3j8hnubyoqyck3q6nlorys6jjem2t.png)
Rate of change of function depend on x. Hence, it is not constant.