Answer:
![(√(3))/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9c7dh99ht57yb0h36daz3cp2g19kxdyxb0.png)
Explanation:
So we start with the original expression to be:
![\sqrt{(1)/(3)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/1qk3e818e9f5fd5uae7to8ioy0k31yh44e.png)
so we need to first split the square root into two, one for the numerator and another one for the denominator so we get:
![(√(1))/(√(3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/kazmhvh7vmhhrqttjsxap5xk0kez0la8mp.png)
we can now simplify that so we get:
![(1)/(√(3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/l5q1v4wiflzz5qzyp9q1narbele9qzvfsr.png)
we can now rationalize the denominator by multiplying the fraction by
![(√(3))/(√(3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/4olqehi823nugdcs590qinno54olhy2eq2.png)
so we get:
![(1)/(√(3))*(√(3))/(√(3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/hfs3e3f62qzj1g7toohvcbuvnyu9tnnez1.png)
we do the multiplication so we end up with:
![(√(3))/((√(3))^(2))](https://img.qammunity.org/2020/formulas/mathematics/high-school/4q853273nbwg2vhh853wdzcyakjxm0ctxt.png)
which simplifies to:
![(√(3))/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9c7dh99ht57yb0h36daz3cp2g19kxdyxb0.png)