Answer:
The point equidistant from the three points (-6,0),(-3,1) and (0,0) is (-3,-3)
Solution:
The given three points are A (-6, 0), B (–3, 1) and C (0, 0)
Let P (x, y) be the point equidistant from these three points.
Distance between two points is given as
![\mathrm{D}=\sqrt{\left(\mathrm{x}_(2)-\mathrm{x}_(1)\right)^(2)+\left(\mathrm{y}_(2-) \mathrm{y}_(1)\right)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h4lyg8h0wphnlr1qow6yyr0fibjs1i0xn3.png)
Where
are the x and y co-ordinates
The distance between A (-6, 0) and P(x, y) is:
Using the distance formulae,
![\mathrm{D}=\sqrt{(\mathrm{x}+6)^(2)+(\mathrm{y}-0)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l5i3nl9vzjdjkwawqwjb1kv1ag1fsamthn.png)
On taking square root we get,
--- eqn 1
The distance between B(-3, 1) and P(x, y) is:
![\mathrm{D}=\sqrt{(\mathrm{x}+3)^(2)+(\mathrm{y}-1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/20sbcp3x98wgsptxfq0k37pbxlvxdutn1f.png)
On taking square root we get
--- eqn 2
The distance between C(x, y) and P (0, 0) is:
-- eqn 3
By equating equation 1 = equation 2 to find the value of y
![(x+6)^(2)+(y-0)^(2)=(x-0)^(2)+(y-0)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z4sku2609yjpfaz4ib1eenhseh4bujrg72.png)
In both the expression
is common so we can cancel it.
![(\mathrm{x}+6)^(2)=(\mathrm{x}-0)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1ka6dnrtrimf06aluv8hftbkf2k7jd52hs.png)
On expanding we get,
![x^(2)+36+12 \mathrm{x}=x^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iskky3frhhg22ne3tckuqraj0cmys0wsg1.png)
12x = -36
x = -3.
Now find the value of y using equation 3.
![\begin{array}{l}{x^(2)+y^(2)=0} \\ {(-3)^(2)+y^(2)=0} \\ {3^(2)=-y^(2)} \\ {y=-3}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wlme66f5k3ogjhdu1yqq8j594jh3oh5tuh.png)
Hence the required points are (-3,-3).