Option C
Answer:
According to the general equation for conditional probability, If
and P(B) =
then
![\mathrm{P}(\mathrm{A} | \mathrm{B})=(3)/(7)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4k1gc6brwsoe8wv4o11l2hlm3c5mqfbgz5.png)
Solution:
Given that
and
![\mathrm{P}(\mathrm{B})=(7)/(18)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h0y6gtlk1rev1812f4dz7eg64i2j8o09wv.png)
We have to find the value of
![\mathrm{P}(\mathrm{A} | \mathrm{B})](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fg01jo3n2tzhw2x6frtpu55rgvxc3c55k7.png)
We know that
![P(A | B)=(P(A \cap B))/(P(B))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/docr2jjol9mnpdji4chnckcjr5ufw17ky3.png)
In order to find the value of
substitute the value
from the given data.
Step 1:
![P(A | B)=(P(A \cap B))/(P(B))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/docr2jjol9mnpdji4chnckcjr5ufw17ky3.png)
![P(A | B)=((1)/(6))/((7)/(18))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ktwvbo1my1h9fbmu4uxl44fwvj6wjf25v7.png)
Step 2:
By evaluating the above term we get below expression
![\begin{array}{l}{\mathrm{P}(\mathrm{A} | \mathrm{B})=(1)/(6) * (18)/(7)} \\ {\mathrm{P}(\mathrm{A} | \mathrm{B})=(3)/(7)}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/63q1ga1jt8lipe86nmlfo0redebrfhmkcc.png)
Hence we found the value for
using the given data.