Answer:
Charge stored after insertion will be
![22.257* 10^(-5)C](https://img.qammunity.org/2020/formulas/physics/college/39v68543rsyqjeja0ften2k4h4zeqcd2do.png)
Step-by-step explanation:
We have given potential difference V =2.63 V
charge stored by the capacitor when without dielectric =
![6.27* 10^(-5)C](https://img.qammunity.org/2020/formulas/physics/college/1i348kwkg7884ixh5pk3x5umrm38qadfzn.png)
We know that
, here
is capacitance without dielectric
![6.27* 10^(-27)=2.63* C_0](https://img.qammunity.org/2020/formulas/physics/college/4uast3onhqt4utz59pbq8hhfczavexe9ni.png)
![C_0=2.384* 10^(-5)F](https://img.qammunity.org/2020/formulas/physics/college/66gd19c52gpy6vgtbu17p6fot1ludznoly.png)
We have given
k = dielectric constant = 5.99
C = Capacitance with the dielectric = k
= 3.55×
=
![8.463* 10^(-5)F](https://img.qammunity.org/2020/formulas/physics/college/qy69iivqdhfrx6gmfsolfhuq0okr42psxx.png)
Potential difference is due to the external charging source so it remains same
V = potential difference after insertion = 2.63 volts
New charge stored ,
![Q=CV=8.463* 10^(-5)* 2.63=22.257* 10^(-5)C](https://img.qammunity.org/2020/formulas/physics/college/wv1v6zflf5kvhyfwkn7zn7s2i9rz4d9t79.png)