Answer:
k = -6
w = ±9
f = -7
Determinant = -136
Explanation:
![\left[\begin{array}{cc}-12&-w^(2)\\2f&3\end{array}\right] =\left[\begin{array}{cc}2k&-81\\-14&3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/owwapn4r7qtn7mtdlo0cj3g8yrjh5es8v3.png)
Each cell in the left matrix equals the corresponding cell in the right matrix:
-12 = 2k → k = -6
-w² = -81 → w = ±9
2f = -14 → f = -7
![\left|\begin{array}{ccc}-4&5&6\\0&4&4\\-2&-5&4\end{array}\right|](https://img.qammunity.org/2020/formulas/mathematics/high-school/lunjcc1ezh4xo63y46k75euzv9wersxmib.png)
To find the determinant of a 3x3 matrix, you can use something called "Laplace expansion".
Start with the first column in the top row (-4). If you block out the row and column containing that cell, you get a 2x2 matrix:
![\left|\begin{array}{ccc}*&*&*\\ *&4&4\\ *&-5&4\end{array}\right|](https://img.qammunity.org/2020/formulas/mathematics/high-school/y1oobov15zqzpltryy0ztb9xdkjcbiyk6o.png)
Multiply the -4 by the determinant of that 2x2 matrix:
![-4\left|\begin{array}{cc}4&4\\-5&4\end{array}\right|](https://img.qammunity.org/2020/formulas/mathematics/high-school/34jfhnduuoe8i1wn35j46o89xaqlbxjxe2.png)
Repeat for the other two cells in the top row.
![5\left|\begin{array}{cc}0&4\\-2&4\end{array}\right|](https://img.qammunity.org/2020/formulas/mathematics/high-school/xyetgr9n8ib8h0g495skf34m4s35iw96d5.png)
![6\left|\begin{array}{cc}0&4\\-2&-5\end{array}\right|](https://img.qammunity.org/2020/formulas/mathematics/high-school/todaf1c5ixul0bytugkzgyj2q7ei46fbid.png)
Add them together, alternating the signs (first column positive, second column negative, third column positive).
![-4\left|\begin{array}{cc}4&4\\-5&4\end{array}\right|-5\left|\begin{array}{cc}0&4\\-2&4\end{array}\right|+6\left|\begin{array}{cc}0&4\\-2&-5\end{array}\right|](https://img.qammunity.org/2020/formulas/mathematics/high-school/m7bgbsg9z75cd2l9k6smdaxmgg0ygfqw5j.png)
To find the determinants of the 2x2 matrices, multiply the top left and bottom right, then subtract the top right times the bottom left.
![-4((4*4)-(4*-5))-5((0*4)-(4*-2))+6((0*-5)-(4*-2))](https://img.qammunity.org/2020/formulas/mathematics/high-school/2br6ikwdjxv7yku30i3idbv8vjevg8ao9n.png)
Simplify:
![-4(16-(-20))-5(0-(-8))+6(0-(-8))\\-4(36)-5(8)+6(8)\\-144-40+48\\-136](https://img.qammunity.org/2020/formulas/mathematics/high-school/kz7pi9rvm6b2ad98eouhuxw52j52z7n3t1.png)