349,543 views
1 vote
1 vote
Only need help with part (e)!! thank you!!

Only need help with part (e)!! thank you!!-example-1
User Amir Abiri
by
2.7k points

2 Answers

23 votes
23 votes

Answer:

shown in the picture

Explanation:

shown in the picture

Only need help with part (e)!! thank you!!-example-1
User Eduard Mukans
by
2.9k points
11 votes
11 votes

Answer:

a) 9000 L


\textsf{b) (i)} \quad \textsf{Tap }P: \quad (9000)/(x)\:\sf minutes


\textsf{b) (ii)} \quad \textsf{Tap }Q: \quad (9000)/(x+5)\:\sf minutes

c) Proof below.


\textsf{d)} \quad x=(-5+5√(31) )/(2)=11.41941...

e) 5 hours 23 minutes

Explanation:

Part (a)

The aquarium can be modeled as a rectangular prism.

Note: 1 m³ = 1000 L


\begin{aligned}\textsf{Volume of rectangular prism} & = \sf length * width * height\\\\\implies \textsf{Volume of aquarium} & = \sf 3\:m * 2.5\:m * 1.2\:m\\& = \sf 9 \:\:m^3\\& = \sf 9000\:L\end{aligned}

Part (b)


\boxed{ \sf Time = (Volume)/(rate)}


\textsf{(i)} \quad \textsf{Tap }P: \quad (9000)/(x)\:\sf minutes


\textsf{(ii)} \quad \textsf{Tap }Q: \quad (9000)/(x+5)\:\sf minutes

Part (c)

4 hours = 4 × 60 minutes = 240 minutes

If it takes 4 hours longer to fill the aquarium with water using tap P as compared to tap Q, then:


\begin{aligned}\textsf{Tap }P - 240 & = \textsf{Tap }Q\\\\\implies (9000)/(x) -240 & = (9000)/(x+5)\\\\(9000 - 240x)/(x) & = (9000)/(x+5)\\\\(9000-240x)(x+5) & =9000x\\\\9000x + 45000 -240x^2-1200x & = 9000x\\\\-240x^2-1200x+45000 & =0\\\\-120(2x^2+10x-375) & =0\\\\2x^2+10x-375 & =0\end{aligned}

Part (d)

Quadratic Formula


x=(-b \pm √(b^2-4ac) )/(2a)\quad\textsf{when }\:ax^2+bx+c=0

Therefore:


a=2, \quad b=10, \quad c=-375

Substitute these values into the formula and solve for x:


\implies x=(-10 \pm √(10^2-4(2)(-375)) )/(2(2))


\implies x=(-10 \pm √(100+3000) )/(4)


\implies x=(-10 \pm √(3100) )/(4)


\implies x=(-10 \pm √(100 \cdot 31) )/(4)


\implies x=(-10 \pm √(100)√(31) )/(4)


\implies x=(-10 \pm 10√(31) )/(4)


\implies x=(-5\pm 5√(31) )/(2)

As the rate is positive only,


\implies x=(-5+5√(31) )/(2)=11.41941...\sf \:litres\:per\:minute

Part (e)

If the rate that tap P fills the aquarium with water is x litres per min, and the rate the tap Q fills the aquarium with water is (x+5) litres per min, the rate that both taps fill the aquarium is:


\begin{aligned}\implies \sf Rate & = x+(x+5)\\& = 2x + 5\\& = 2\left((-5+5√(31) )/(2)\right)+5\\& = -5+5√(31)+5\\& = 5√(31)\:\: \sf litres\:per\:min\end{aligned}

Therefore, if both taps are turned on together, the time it takes to fill the 9000L aquarium is:


\implies \sf Time & = (9000)/(5√(31) )\:\: \sf minutes \end{aligned}


\implies \sf Time & =323.2895436... \:\: \sf minutes \end{aligned}


\implies \sf Time & =5\:hours\:23.2895436... \:\: \sf minutes \end{aligned}


\implies \sf Time = 5\: h\: 23\: min

Note we really should round up to the nearest minute, even though 23.289... rounded is 23, as if we round down, the aquarium will not quite be filled with water.

User Kerstin
by
3.3k points