Answer:
![Q=4.98* 10^(-3)\ m^3/s](https://img.qammunity.org/2020/formulas/engineering/college/lp9cezki9v41s1kr4ms384z7lbiz33tnai.png)
Step-by-step explanation:
Given that
L= 50 m
Pressure drop = 130 KPa
For Copper tube is 3/4 standard type K drawn tube
Outside diameter=22.22 mm
Inside diameter=18.92 mm
Dynamic viscosity for kerosene
![\mu =0.00164\ Pa.s](https://img.qammunity.org/2020/formulas/engineering/college/tfx6ztbbngm8kwj2y1puug76yru7mpxhz0.png)
Pressure difference given as
![\Delta P=(128\mu QL)/(\pi d_i^4)](https://img.qammunity.org/2020/formulas/engineering/college/dil4wwlfmvk3q1tbw82fnk04ojlksrglvw.png)
Where
L is length of tube
μ is dynamic viscosity
Q is volume flow rate
d is inner diameter of tube
ΔP is pressure drop
Now by putting the values
![\Delta P=(128\mu QL)/(\pi d_i^4)](https://img.qammunity.org/2020/formulas/engineering/college/dil4wwlfmvk3q1tbw82fnk04ojlksrglvw.png)
![130* 1000=(128* 0.00164* 50* Q)/(\pi* 0.0189^4)](https://img.qammunity.org/2020/formulas/engineering/college/4c0ftbweu3ak7ga94twkxdy16gpy5pigdi.png)
![Q=4.98* 10^(-3)\ m^3/s](https://img.qammunity.org/2020/formulas/engineering/college/lp9cezki9v41s1kr4ms384z7lbiz33tnai.png)
So flow rate is
![Q=4.98* 10^(-3)\ m^3/s](https://img.qammunity.org/2020/formulas/engineering/college/lp9cezki9v41s1kr4ms384z7lbiz33tnai.png)