Answer:
![T(5)=49.11^\circ$C](https://img.qammunity.org/2020/formulas/engineering/college/xn9ssw7bxgyzd04sy5jjh44v54vy4539q0.png)
Well, In my opinion, it's still warm enough to drink
Step-by-step explanation:
Let's use Newton's Law of Cooling given by:
(1)
Where:
![T(t)=Temperature\hspace{2 mm}of\hspace{2 mm}the\hspace{2 mm}coffee\hspace{2 mm}at\hspace{2 mm}time\hspace{2 mm}t\hspace{2 mm}(in\hspace{2 mm}minutes)](https://img.qammunity.org/2020/formulas/engineering/college/v5mgkrbm3s6nlz9qzt45p3r8wmk4h1ce2s.png)
![T_o=Initial\hspace{2 mm}temperature\hspace{2 mm}of\hspace{2 mm}the\hspace{2 mm}coffee=85^\circ$C](https://img.qammunity.org/2020/formulas/engineering/college/9vogaud40rhzt91uyfkmlqe1mx6ii9iq20.png)
![Ta=Ambient\hspace{2 mm}temperature=25^\circ$C](https://img.qammunity.org/2020/formulas/engineering/college/jewnllifsdu9x8a6znz0el23fbi9ny1jna.png)
![k=Time\hspace{2 mm}constant](https://img.qammunity.org/2020/formulas/engineering/college/mqe561454u8gqyv7d3ejca2isti1wiv49k.png)
![t=Time\hspace{2 mm}in\hspace{2 mm}minutes](https://img.qammunity.org/2020/formulas/engineering/college/oje8v14dznjbomf78y2rpzjmt2zvl4w6mr.png)
Replacing the data provide in (1)
(2)
So, we need to find k. But we know:
![T(1)=75](https://img.qammunity.org/2020/formulas/engineering/college/ewvp3t17t15e4uc3r2mq9rm2d1j1n0sjw8.png)
Using that information in (2)
(3)
Solving for k in (3)
Sustract 25 to both sides:
![60*e^(-k) =50](https://img.qammunity.org/2020/formulas/engineering/college/ci1lm4eh9ny48sayw3mh2c6jf5zyrltq9m.png)
Multiply both sides by
![(1)/(60)](https://img.qammunity.org/2020/formulas/mathematics/college/pheqyab26zz81ea6tpkdo7km65counrsn1.png)
Express
as
![(1)/(e^(k))](https://img.qammunity.org/2020/formulas/engineering/college/mzi7aufm8cl2jr6g1w2s14qpvfzv6l1crf.png)
![(1)/(e^(k))=(5)/(6)](https://img.qammunity.org/2020/formulas/engineering/college/yr5d32vdlfjldpi6jo20buvivjispyckqp.png)
Natural logarithm to both sides:
![ln((1)/(e^(k) ))=ln((5)/(6) )\\ ln(1)-ln(e^(k))=-0.1823215568\\0-k=-0.1823215568\\k=0.1823215568](https://img.qammunity.org/2020/formulas/engineering/college/fz543h99qr2gu1tvl8mwacs52hovep8ie1.png)
Replacing k in (2)
(4)
Evaluating t=5 in (4)
![T(5)= 25+60*e^(-(0.1823215568)5)=25+60*e^(-0.911607784) =49.11265432^\circ$C](https://img.qammunity.org/2020/formulas/engineering/college/leftlzyahuh92xfqeuskhucwtccgs0l22a.png)
I attached you the graph of the function (4)