50.5k views
5 votes
What, roughly, is the percent uncertainty in the volume of a spherical beach ball whose radius is 5.66 0.09 m?

User Yurowitz
by
8.0k points

1 Answer

2 votes

Answer:

  • 4.77 %

Step-by-step explanation:

We know that the volume V for a sphere of radius r is


V(r) = (4)/(3) \ \pi \ r^3

If we got an uncertainty
\Delta r the formula for the uncertainty of V is:


\Delta V(r) = \sqrt{  ((dV)/(dr) \Delta r)^2  }

We can calculate this uncertainty, first we obtain the derivative:


(dV)/(dr)  = 3 * (4)/(3) \ \pi \ r^2


(dV)/(dr)  = 4 \ \pi \ r^2

And using it in the formula:


\Delta V(r) = √(  (4 \ \pi \ r^2\Delta r)^2  )


\Delta V(r) = √(  4^2 \ \pi^2 \ r^4 \Delta r^2  )


\Delta V(r) =  4 \  \pi \ r^2 \Delta r

The relative uncertainty is:


(\Delta V(r))/(V(r))


( 4 \  \pi \ r^2 \Delta r  )/( (4)/(3) \ \pi \ r^3)


( 3  \Delta r  )/(  r)

Using the values for the problem:


( 3 * 0.09 m  )/(  5.66 m) = 0.0477

This is, a percent uncertainty of 4.77 %

User Jamone
by
8.6k points

Related questions