Answer:
Between 150 and 450
Explanation:
We are going to find the number by resolving a system of linear equations.
First we write the system equations :
![C+S+A=750](https://img.qammunity.org/2020/formulas/mathematics/college/qvjduqxx74ojhgkqm0ybqdzdi3o4oabu2c.png)
Where C : children, S : students and A : adults
The equation represents the ''full attendance''
The second equation :
![3C+5S+7A=3450](https://img.qammunity.org/2020/formulas/mathematics/college/c4iwv6z4sn9d15rzwophkyykf620bzxzkj.png)
This equation represents the totaled receipts.
The system :
![C+S+A=750\\3C+5S+7A=3450](https://img.qammunity.org/2020/formulas/mathematics/college/40zk163imabtqmiibtwpn29inuoy8z3qji.png)
has the following associated matrix :
![\left[\begin{array}{cccc}1&1&1&750\\3&5&7&3450\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/d42lwmqxtnqh4l81t0llk54g6zx91oqn7k.png)
By performing elementary matrix operations we find that the matrix is equivalent to
![\left[\begin{array}{cccc}1&0&-1&150\\0&1&2&600\\\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/ovgw8u0s9h5o4151hiofjczlk7pdo7cefk.png)
The new system :
![C-A=150\\S+2A=600](https://img.qammunity.org/2020/formulas/mathematics/college/is9itl480js9l418hgsovjuyowguxyhelc.png)
Working with the equations :
![C = 150 + A\\S = 600-2A](https://img.qammunity.org/2020/formulas/mathematics/college/na7pgsf15fwek8lo5hwvudoa0vt910yzte.png)
Our solution vector is :
![\left[\begin{array}{c}C&S&A\end{array}\right] =\left[\begin{array}{c}150+A&600-2A&A\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/f4v6ov5rqne8b3hqowztomcww3v6iso16x.png)
For example :
If 0 adults attended ⇒ A = 0
![C = 150 + 0 \\C = 150\\S = 600 - 2A\\S = 600](https://img.qammunity.org/2020/formulas/mathematics/college/3pbzrrp9n3q7d9071br11w11u9v0r6doam.png)
This verify the totaled receipts equation :
150($3)+600($5) = $ 3450
A ≥ 0 ⇒ If A = 0 ⇒ C = 150
C = 150 is the minimum children attendance
From the equation :
![S = 600 -2A](https://img.qammunity.org/2020/formulas/mathematics/college/t78dce7pj2uq5kxmain0zfjrdf7pi1yoyc.png)
S ≥0
600 - 2A ≥ 0
600 ≥ 2A
300≥ A
A is restricted to the interval [ 0, 300]
When A = 0 ⇒ C = 150
When A = 300 ⇒C = 150 + A = 150 + 300 = 450
Children ∈ [ 150,450]
With C being an integer number (including 0)
Also S and A are integer numbers (including 0)