164k views
4 votes
Find e^cos(2+3i) as a complex number expressed in Cartesian form.

User Eugene M
by
5.1k points

1 Answer

4 votes

Answer:

The complex number
e^(\cos(2+31)) = \exp(\cos(2+3i)) has Cartesian form


\exp\left(\cosh 3\cos 2\right)\cos(\sinh 3\sin 2)-i\exp\left(\cosh 3\cos 2\right)\sin(\sinh 3\sin 2).

Explanation:

First, we need to recall the definition of
\cos z when
z is a complex number:


\cos z = \cos(x+iy) = (e^(iz)+e^(-iz))/(2).

Then,


\cos(2+3i) = (e^(i(2+31)) + e^(-i(2+31)))/(2) = (e^(2i-3)+e^(-2i+3))/(2). (I)

Now, recall the definition of the complex exponential:


e^(z)=e^(x+iy) = e^x(\cos y +i\sin y).

So,


e^(2i-3) = e^(-3)(\cos 2+i\sin 2)


e^(-2i+3) = e^(3)(\cos 2-i\sin 2) (we use that
\sin(-y)=-\sin y).

Thus,


e^(2i-3)+e^(-2i+3) = e^(-3)\cos 2+ie^(-3)\sin 2 + e^(3)\cos 2-ie^(3)\sin 2)

Now we group conveniently in the above expression:


e^(2i-3)+e^(-2i+3) = (e^(-3)+e^(3))\cos 2 + i(e^(-3)-e^(3))\sin 2.

Now, substituting this equality in (I) we get


\cos(2+3i) = (e^(-3)+e^(3))/(2)\cos 2 -i(e^(3)-e^(-3))/(2)\sin 2 = \cosh 3\cos 2-i\sinh 3\sin 2.

Thus,


\exp\left(\cos(2+3i)\right) = \exp\left(\cosh 3\cos 2-i\sinh 3\sin 2\right)


\exp\left(\cos(2+3i)\right) = \exp\left(\cosh 3\cos 2\right)\left[ \cos(\sinh 3\sin 2)-i\sin(\sinh 3\sin 2)\right].

User Sccs
by
4.9k points