Answer:
The complex number
has Cartesian form
.
Explanation:
First, we need to recall the definition of
when
is a complex number:
.
Then,
. (I)
Now, recall the definition of the complex exponential:
.
So,
![e^(2i-3) = e^(-3)(\cos 2+i\sin 2)](https://img.qammunity.org/2020/formulas/mathematics/college/uzv8mghjipokbapxc82v8s2fdcl34ya7it.png)
(we use that
.
Thus,
![e^(2i-3)+e^(-2i+3) = e^(-3)\cos 2+ie^(-3)\sin 2 + e^(3)\cos 2-ie^(3)\sin 2)](https://img.qammunity.org/2020/formulas/mathematics/college/aril9vlf4u84psr5vgwpldlpy6t6t9rwiv.png)
Now we group conveniently in the above expression:
.
Now, substituting this equality in (I) we get
.
Thus,
![\exp\left(\cos(2+3i)\right) = \exp\left(\cosh 3\cos 2-i\sinh 3\sin 2\right)](https://img.qammunity.org/2020/formulas/mathematics/college/zognjhwq58jbsntgvk4i0orex8dp1xswau.png)
.