Answer:
![\kappa = (1)/(2 b)](https://img.qammunity.org/2020/formulas/physics/high-school/yvnqeuq0nta197yy1pe1u293mr8dq1l5gr.png)
Step-by-step explanation:
The equation for kappa ( κ) is
![\kappa = (a)/(a^2 + b^2)](https://img.qammunity.org/2020/formulas/physics/high-school/ks3d1c000dnpqzus8nxg9h3aa2mg8xugb5.png)
we can find the maximum of kappa for a given value of b using derivation.
As b is fixed, we can use kappa as a function of a
![\kappa (a) = (a)/(a^2 + b^2)](https://img.qammunity.org/2020/formulas/physics/high-school/cn48q0f5yxrsjfmamrjui3vkwboaj992h5.png)
Now, the conditions to find a maximum at
are:
![(d \kappa(a))/(da) \left | _(a=a_0) = 0](https://img.qammunity.org/2020/formulas/physics/high-school/hh6z8q4clo3vky01tvoxk7gqgdllu4ou49.png)
![(d^2\kappa(a))/(da^2) \left | _(a=a_0) < 0](https://img.qammunity.org/2020/formulas/physics/high-school/4vt8ll2godj9cyahdzjtqdfe6qa0mu0l4p.png)
Taking the first derivative:
![(d)/(da) \kappa = (d)/(da) ((a)/(a^2 + b^2))](https://img.qammunity.org/2020/formulas/physics/high-school/j5lii525l647ufj737ttaw8exwbazn7mw2.png)
![(d)/(da) \kappa = (1)/(a^2 + b^2) (d)/(da)(a)+ a * (d)/(da) ((1)/(a^2 + b^2) )](https://img.qammunity.org/2020/formulas/physics/high-school/yz1a5bycfk1rdtlo1yf8iuq0vxty5lqv1f.png)
![(d)/(da) \kappa = (1)/(a^2 + b^2) * 1 + a * (-1) ((1)/((a^2 + b^2)^2) ) (d)/(da) (a^2+b^2)](https://img.qammunity.org/2020/formulas/physics/high-school/tm1nv73914n6z5xagrxnnc6o6m8kep91fr.png)
![(d)/(da) \kappa = (1)/(a^2 + b^2) * 1 - a ((1)/((a^2 + b^2)^2) ) (2* a)](https://img.qammunity.org/2020/formulas/physics/high-school/t8frkduip9jik26xdtkywk19capzhffdte.png)
![(d)/(da) \kappa = (1)/(a^2 + b^2) * 1 - 2 a^2 ((1)/((a^2 + b^2)^2) )](https://img.qammunity.org/2020/formulas/physics/high-school/r2dc5mg34562l7uralos7wzgxc16q693yn.png)
![(d)/(da) \kappa = (a^2+b^2)/((a^2 + b^2)^2) - 2 a^2 ((1)/((a^2 + b^2)^2) )](https://img.qammunity.org/2020/formulas/physics/high-school/nm7jehthdrxxf0llwm307nsqa6drfg13iw.png)
![(d)/(da) \kappa = (1)/((a^2 + b^2)^2) (a^2+b^2 - 2 a^2)](https://img.qammunity.org/2020/formulas/physics/high-school/3xmbgg50lmag0zqjvghaec06nyx6ugrwmw.png)
![(d)/(da) \kappa = (b^2 - a^2)/((a^2 + b^2)^2)](https://img.qammunity.org/2020/formulas/physics/high-school/q664qc9royxm05e77qfm2gzg78gs7j873j.png)
This clearly will be zero when
![a^2 = b^2](https://img.qammunity.org/2020/formulas/physics/high-school/frremtvoa5c59lz9xb715zuzns0w2wcyf2.png)
as both are greater (or equal) than zero, this implies
![a=b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vsn6024sqsyjuysrbd2n8dvb7vh1recjia.png)
The second derivative is
![(d^2)/(da^2) \kappa = (d)/(da) ((b^2 - a^2)/((a^2 + b^2)^2) )](https://img.qammunity.org/2020/formulas/physics/high-school/2rfmeut2mqxsv89yca5a4mrpi5zzu9cqrn.png)
![(d^2)/(da^2) \kappa = (1)/((a^2 + b^2)^2) (d)/(da) ( b^2 - a^2 ) + (b^2 - a^2) (d)/(da) ( (1)/((a^2 + b^2)^2) )](https://img.qammunity.org/2020/formulas/physics/high-school/so7535sfisq6uhtlclvqdy2juxopoakl2p.png)
![(d^2)/(da^2) \kappa = (1)/((a^2 + b^2)^2) ( -2 a ) + (b^2 - a^2) (-2) ( (1)/((a^2 + b^2)^3) ) (2a)](https://img.qammunity.org/2020/formulas/physics/high-school/ranzjo3pv45is474054kgcpivwdca6uljt.png)
![(d^2)/(da^2) \kappa = (-2 a)/((a^2 + b^2)^2) + (b^2 - a^2) (-2) ( (1)/((a^2 + b^2)^3) ) (2a)](https://img.qammunity.org/2020/formulas/physics/high-school/k3y0b9n3a8ylk9wblagaants16zv1nvtpx.png)
We dcan skip solving the equation noting that, if a=b, then
![b^2 - a^2 = 0](https://img.qammunity.org/2020/formulas/physics/high-school/sfgxtfsd7ynoeod1fnu48iilxcfk4bnaly.png)
at this point, this give us only the first term
![(d^2)/(da^2) \kappa = (- 2 a)/((a^2 + a^2)^2)](https://img.qammunity.org/2020/formulas/physics/high-school/bbnpghk1jlbarsh99ial26i9zeg2y3h8ap.png)
if a is greater than zero, this means that the second derivative is negative, and the point is a minimum
the value of kappa is
![\kappa = (b)/(b^2 + b^2)](https://img.qammunity.org/2020/formulas/physics/high-school/tsfkfngh4zysccxhrr8zf6rn7fx7dxceis.png)
![\kappa = (b)/(2* b^2)](https://img.qammunity.org/2020/formulas/physics/high-school/6e0rpb9fwdkuxgpzvxjps6grpuui2ia5hb.png)
![\kappa = (1)/(2 b)](https://img.qammunity.org/2020/formulas/physics/high-school/yvnqeuq0nta197yy1pe1u293mr8dq1l5gr.png)