150k views
1 vote
The curvature of the helix r​(t)equals(a cosine t )iplus(a sine t )jplusbt k​ (a,bgreater than or equals​0) is kappaequalsStartFraction a Over a squared plus b squared EndFraction . What is the largest value kappa can have for a given value of​ b?

User Tisha
by
5.2k points

1 Answer

4 votes

Answer:


\kappa = (1)/(2 b)

Step-by-step explanation:

The equation for kappa ( κ) is


\kappa = (a)/(a^2 + b^2)

we can find the maximum of kappa for a given value of b using derivation.

As b is fixed, we can use kappa as a function of a


\kappa (a) = (a)/(a^2 + b^2)

Now, the conditions to find a maximum at
a_0 are:


(d \kappa(a))/(da) \left | _(a=a_0) = 0


(d^2\kappa(a))/(da^2) &nbsp;\left | _(a=a_0) < 0

Taking the first derivative:


(d)/(da) \kappa = (d)/(da) &nbsp;((a)/(a^2 + b^2))


(d)/(da) \kappa = (1)/(a^2 + b^2) (d)/(da)(a)+ a * (d)/(da) &nbsp;((1)/(a^2 + b^2) )


(d)/(da) \kappa = (1)/(a^2 + b^2) * 1 + a * (-1) &nbsp;((1)/((a^2 + b^2)^2) ) (d)/(da) &nbsp;(a^2+b^2)


(d)/(da) \kappa = (1)/(a^2 + b^2) * 1 - a &nbsp;((1)/((a^2 + b^2)^2) ) (2* a)


(d)/(da) \kappa = (1)/(a^2 + b^2) * 1 - &nbsp;2 a^2 &nbsp;((1)/((a^2 + b^2)^2) )


(d)/(da) \kappa = (a^2+b^2)/((a^2 + b^2)^2) &nbsp;- &nbsp;2 a^2 &nbsp;((1)/((a^2 + b^2)^2) )


(d)/(da) \kappa = (1)/((a^2 + b^2)^2) (a^2+b^2 - &nbsp;2 a^2)


(d)/(da) \kappa = (b^2 - &nbsp;a^2)/((a^2 + b^2)^2)

This clearly will be zero when


a^2 = b^2

as both are greater (or equal) than zero, this implies


a=b

The second derivative is


(d^2)/(da^2) \kappa = (d)/(da) ((b^2 - &nbsp;a^2)/((a^2 + b^2)^2) )


(d^2)/(da^2) \kappa = (1)/((a^2 + b^2)^2) (d)/(da) ( b^2 - &nbsp;a^2 ) + (b^2 - &nbsp;a^2) (d)/(da) ( (1)/((a^2 + b^2)^2) &nbsp;)


(d^2)/(da^2) \kappa = (1)/((a^2 + b^2)^2) ( -2 &nbsp;a ) + (b^2 - &nbsp;a^2) (-2) ( (1)/((a^2 + b^2)^3) &nbsp;) (2a)


(d^2)/(da^2) \kappa = (-2 &nbsp;a)/((a^2 + b^2)^2) + (b^2 - &nbsp;a^2) (-2) ( (1)/((a^2 + b^2)^3) &nbsp;) (2a)

We dcan skip solving the equation noting that, if a=b, then


b^2 - &nbsp;a^2 = 0

at this point, this give us only the first term


(d^2)/(da^2) \kappa = (- 2 &nbsp;a)/((a^2 + a^2)^2)

if a is greater than zero, this means that the second derivative is negative, and the point is a minimum

the value of kappa is


\kappa = (b)/(b^2 + b^2)


\kappa = (b)/(2* b^2)


\kappa = (1)/(2 b)

User Christophe Geers
by
6.1k points