Answer:
Explanation:
From the problem statement, we can set up the following two equations:
![L = 2W + 2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/28xzqgsgbwgog94xb2wnlgketpxtfvd7as.png)
![40 = L * W](https://img.qammunity.org/2020/formulas/mathematics/middle-school/orq0p12uj05xhdku3qla9ah4guhiej0575.png)
Plugging the first equation into the second, we can solve for
:
![40 = L * W](https://img.qammunity.org/2020/formulas/mathematics/middle-school/orq0p12uj05xhdku3qla9ah4guhiej0575.png)
![40 = (2W + 2) * W](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fp3opqsi9wnx2b4623mn1fgq5fifoa4rr9.png)
![40 = 2W^(2) + 2W](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fvjjorip3u3xey5u29mw7l0anijf0z9hsh.png)
![2W^(2) + 2W - 40 = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tn8ybm0xquwrzqem68aw1z42sy359vug07.png)
![W^(2) + W - 20 = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v8ahfrp6tb11tvna5rsz8eah0imynetbe4.png)
![(W + 5)(W - 4) = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3zp4hg3718rmg25pyl07i40hppkln7gkdh.png)
![W = -5, 4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xq6uzu03102ctkutazsf2990bx5ztym7wp.png)
Since the length must be a positive number, then we know that
. We can now plug this number into the second equation to get
:
![40 = L * W](https://img.qammunity.org/2020/formulas/mathematics/middle-school/orq0p12uj05xhdku3qla9ah4guhiej0575.png)
![40 = L * (4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fcwm22tlf0kb6aw791qq52b15nw3hb5tkl.png)
![L = 10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xxsthzlx3glo56opm5ewm05p81x610ptd7.png)