Answer:
C. Probability is 0.90, which is inconsistent with the Empirical Rule.
Explanation:
We have been given that on average, the parts from a supplier have a mean of 97.5 inches and a standard deviation of 6.1 inches.
First of all, we will find z-score corresponding to 87.5 and 107.5 respectively as:
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hq285311c9d1m36eo8c9nqykppzmieuuwe.png)
![z=(87.5-97.5)/(6.1)](https://img.qammunity.org/2020/formulas/mathematics/college/xs5b7ztfv1nqhjxvqhi542xwjw6g12kaav.png)
![z=(-10)/(6.1)](https://img.qammunity.org/2020/formulas/mathematics/college/n7socmko7prayasq2wm3o2hjhn4z8247ne.png)
![z=-1.6393](https://img.qammunity.org/2020/formulas/mathematics/college/7erjvkvzi6n7cz9a2ctiwdi38i6pr7er9i.png)
![z\approx-1.64](https://img.qammunity.org/2020/formulas/mathematics/college/l69i2mtv84bdvg5tpikttv3n9yc9mc1zld.png)
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hq285311c9d1m36eo8c9nqykppzmieuuwe.png)
![z=(107.5-97.5)/(6.1)](https://img.qammunity.org/2020/formulas/mathematics/college/wve8h5cqr3m19v9n584dq52ismv2vi8r2e.png)
![z=(10)/(6.1)](https://img.qammunity.org/2020/formulas/mathematics/college/xv928it64qmp8o2vuoex3xgqtrleluh3kg.png)
![z=1.6393](https://img.qammunity.org/2020/formulas/mathematics/college/un52vcbm9xdjyaiymxqs3wa5ctrcdrfd75.png)
![z\approx 1.64](https://img.qammunity.org/2020/formulas/mathematics/college/xzy5msgtxi9fzxsczymizausohr4k5m75t.png)
Now, we need to find the probability
.
Using property
, we will get:
![P(-1.64<z<1.64)=P(z<1.64)-P(z<-1.64)](https://img.qammunity.org/2020/formulas/mathematics/college/ldysmq9y6smrxn5v8hxzlphn2ondw9ye5w.png)
From normal distribution table, we will get:
![P(-1.64<z<1.64)=0.94950-0.05050](https://img.qammunity.org/2020/formulas/mathematics/college/gwk34ft7j5e2zq387wh8mqsh2vcmbr7mgf.png)
![P(-1.64<z<1.64)=0.899](https://img.qammunity.org/2020/formulas/mathematics/college/rnh8sq60nptvdt9hf1mbj6m9g5pgdwkz01.png)
![P(-1.64<z<1.64)\approx 0.90](https://img.qammunity.org/2020/formulas/mathematics/college/9rorscdoba3fib6bht1h9bh5r2i6jm3i3u.png)
Since the probability is 0.90, which is inconsistent with the Empirical Rule, therefore, option C is the correct choice.