Answer:
The magnitude of the final velocity of the two-object system is
![v=4.37(m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/kid3jaavy0k6k47pun2ntob8b9uek0hnme.png)
Step-by-step explanation:
As the Momentum is conserved, we can compare the instant before the collision, and the instant after. Also, we have to take in account the two components of the problem (x-direction and y-direction).
To do that, we put our 0 of coordinates where the collision takes place.
So, for the initial momentum we have that
![p_(ix)=m_(a)v_(0a)+0](https://img.qammunity.org/2020/formulas/physics/college/23dttgkgtrf09by6i5orb3dd4jdfweifev.png)
![p_(iy)=0+m_(b)v_(0b)](https://img.qammunity.org/2020/formulas/physics/college/9h9j5dha7emdjr9qkpksook5zuqkr6fpwi.png)
Now, this is equal to the final momentum (in each coordinate)
![p_(fx)=(m_(a)+m_(b)) v_(fx)](https://img.qammunity.org/2020/formulas/physics/college/67eu1r079egyske38q6l2tr95l7fv2y0me.png)
![p_(fy)=(m_(a)+m_(b)) v_(fy)](https://img.qammunity.org/2020/formulas/physics/college/zhxvixxcwihz5gn6ghdumx3gtg4j55388r.png)
So, we equalize each coordinate and get each final velocity
![m_(a)v_(0a)=(m_(a)+m_(b)) v_(fx) \Leftrightarrow v_(fx)=(m_(a)v_(0a))/((m_(a)+m_(b)))](https://img.qammunity.org/2020/formulas/physics/college/x1bgemci0gpks94elaxuhj2q546lai5zxb.png)
![m_(b)v_(0b)=(m_(a)+m_(b)) v_(fy) \Leftrightarrow v_(fy)=(m_(b)v_(0b))/((m_(a)+m_(b)))](https://img.qammunity.org/2020/formulas/physics/college/ma94hgpq68w70cvsmh6nd6jqs0h0k0vjvd.png)
Finally, to calculate the magnitude of the final velocity, we need to calculate
![v_(f)=\sqrt{(v_(fx))^(2)+(v_(fy))^(2)}](https://img.qammunity.org/2020/formulas/physics/college/x4a2zqf8m3x4is6vr5quorrq007jv0ydve.png)
which, replacing with the previous results, is
![v_(f)=\sqrt{(v_(fx))^(2)+(v_(fy))^(2)}=(\sqrt{((18.5*8.15)/(49))^(2)+((30.5*5.00)/(49))^(2)})(m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/1ezkkiz2u0zfgnwp0dfourlcbm9oeeb98z.png)
Therefore, the outcome is
![v_(f)=4.37(m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/6ll5f3kbuh121lakd5t5w864co5ag9khoc.png)