136k views
4 votes
The value of an investment A (in dollars) after t years is given by the function A(t) = A0ekt. If it takes 10 years for an investment of $1,000 to triple, how many years will it take for the investment to be $9,000? Simplify your answer completely.

User Mle
by
4.9k points

1 Answer

2 votes

Answer:

20 years.

Explanation:

We have been given a formula
A(t)=A_0\cdot e^(kt), which represents the value of an investment A (in dollars) after t years.

Substitute the given values:


\$3,000=\$1,000\cdot e^(k*10)

Let us solve for k.


(\$3,000)/(\$1,000)=(\$1,000\cdot e^(k*10))/(\$1,000)


3=e^(k*10)

Take natural log of both sides:


\text{ln}(3)=\text{ln}(e^(k*10))

Using property
\text{ln}(a^b)=b\cdot \text{ln}(a), we will get:


\text{ln}(3)=10k\cdot\text{ln}(e)

We know that
\text{ln}(e)=1, so


\text{ln}(3)=10k\cdot 1


\text{ln}(3)=10k


\frac{\text{ln}(3)}{10}=(10k)/(10)


\frac{\text{ln}(3)}{10}=k


\$9,000=\$1,000\cdot e^{\frac{\text{ln}(3)}{10}*t}

Dividing both sides by 1000, we will get:


9=e^{\frac{\text{ln}(3)}{10}*t}

Take natural log of both sides:


\text{ln}(9)=\text{ln}(e^{\frac{\text{ln}(3)}{10}*t)


\text{ln}(9)=\frac{\text{ln}(3)}{10}*t\cdot\text{ln}(e)


\text{ln}(9)=\frac{\text{ln}(3)}{10}*t\cdot1


10*\text{ln}(9)=10*\frac{\text{ln}(3)}{10}*t


10\text{ln}(9)=\text{ln}(3)*t


10\text{ln}(3^2)=\text{ln}(3)*t


2\cdot 10\text{ln}(3)=\text{ln}(3)*t


20\text{ln}(3)=\text{ln}(3)*t

Divide both sides by
\text{ln}(3):


\frac{20\text{ln}(3)}{\text{ln}(3)}=\frac{\text{ln}(3)*t}{\text{ln}(3)}


20=t

Therefore, it will take 20 years for the investment to be $9,000.

User ErnieAndBert
by
5.1k points