Answer:
20 years.
Explanation:
We have been given a formula
, which represents the value of an investment A (in dollars) after t years.
Substitute the given values:
![\$3,000=\$1,000\cdot e^(k*10)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rt6vporprxz01fwyhbnvzjd80qkvmmfgil.png)
Let us solve for k.
![(\$3,000)/(\$1,000)=(\$1,000\cdot e^(k*10))/(\$1,000)](https://img.qammunity.org/2020/formulas/mathematics/high-school/wh6aph8zojqmfeb4av2x5ecrwc0pttue93.png)
![3=e^(k*10)](https://img.qammunity.org/2020/formulas/mathematics/high-school/v4yf8frvmjpdapv8fpwt8h3clwom8ncqsl.png)
Take natural log of both sides:
![\text{ln}(3)=\text{ln}(e^(k*10))](https://img.qammunity.org/2020/formulas/mathematics/high-school/eoi7fwcfe6d1bhfa6dz7nqe6zsnad24mii.png)
Using property
, we will get:
![\text{ln}(3)=10k\cdot\text{ln}(e)](https://img.qammunity.org/2020/formulas/mathematics/high-school/2hycmzja2hw9wqisgziorhff86w8u3y405.png)
We know that
, so
![\$9,000=\$1,000\cdot e^{\frac{\text{ln}(3)}{10}*t}](https://img.qammunity.org/2020/formulas/mathematics/high-school/xax6ju3l233ab5klnuds9mc2c5gmtbybo2.png)
Dividing both sides by 1000, we will get:
![9=e^{\frac{\text{ln}(3)}{10}*t}](https://img.qammunity.org/2020/formulas/mathematics/high-school/jcfx1o9ezntenf7hhi5pcferogpxkq9jn9.png)
Take natural log of both sides:
![\text{ln}(9)=\frac{\text{ln}(3)}{10}*t\cdot\text{ln}(e)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7h5parl5lxy0ru2kr2ub4q93vsdmclopp4.png)
![\text{ln}(9)=\frac{\text{ln}(3)}{10}*t\cdot1](https://img.qammunity.org/2020/formulas/mathematics/high-school/2pjrn4xrwoyc4jng6f7gy3tfq6fj9kv8e6.png)
![10*\text{ln}(9)=10*\frac{\text{ln}(3)}{10}*t](https://img.qammunity.org/2020/formulas/mathematics/high-school/14haan4xkqyiaibsmdatl3nb43nba05rxv.png)
![10\text{ln}(9)=\text{ln}(3)*t](https://img.qammunity.org/2020/formulas/mathematics/high-school/nlk1z6n6lhsu6883hng135nle57oc31ppc.png)
![10\text{ln}(3^2)=\text{ln}(3)*t](https://img.qammunity.org/2020/formulas/mathematics/high-school/xloq0tgc61lb6qqgzxpqdnc6olb8jszeuh.png)
![2\cdot 10\text{ln}(3)=\text{ln}(3)*t](https://img.qammunity.org/2020/formulas/mathematics/high-school/u6h2by1cre037hzsujmrphk2h4bwt113y7.png)
![20\text{ln}(3)=\text{ln}(3)*t](https://img.qammunity.org/2020/formulas/mathematics/high-school/e5c6u1tdsfphkxf7sm56ftbamdcvd3yr6k.png)
Divide both sides by
:
![\frac{20\text{ln}(3)}{\text{ln}(3)}=\frac{\text{ln}(3)*t}{\text{ln}(3)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/35amxcko4vx00hlgcx1hkvmjywyfnleo03.png)
![20=t](https://img.qammunity.org/2020/formulas/mathematics/high-school/tdog9lkzxxd8wye2n6dg63fs7epgwewblz.png)
Therefore, it will take 20 years for the investment to be $9,000.