186k views
0 votes
A π_ ("pi-minus") particle, which has charge _e, is at location ‹ 4.00 10-9, -3.00 10-9, -6.00 10-9 › m. What is the electric field at location < -3.00 10-9, 2.00 10-9, 4.00 10-9 > m, due to the π_ particle?

2 Answers

5 votes

Answer:

What he said /\

|

Step-by-step explanation:

User Ajaybc
by
8.1k points
3 votes

Answer:

The electric field is
\frac{10.08*10^(-18)\hat{i}}{2295.2}-\frac{7.2*10^(-18)\hat{j}}{2295.2}-\frac{14.4*10^(-18)\hat{k}}{2295.2}

Step-by-step explanation:

Given that,

Location of charge
r_(1) = <4.00*10^(-9),-3.00*10^(-9),-6.00*10^(-9)>/ m

Location of electric field
r_(12) = <-3.00*10^(-9),2.00*10^(-9),4.00*10^(-9)>/ m

We nee to calculate the distance

Using relation of distance


\vec{r}=((-3-4)\hat{i}+(2-(-3))\hat{j}+(4-(-6))\hat{k})*10^(-9)


\vec{r}=(-7\hat{i}+5\hat{j}+10\hat{k})*10^(-9)

We need to calculate the electric field

Using formula of electric field


E=(1)/(4\pi\epsilon_(0))(q)/(r^3)*\vec{r}

Put the value into the formula


E=\frac{9*10^(9)*(1.6*10^(-19))*((-7\hat{i}+5\hat{j}+10\hat{k})*10^(-9))}{(√((-7)^2+(5)^2+(10)^2))^3}


E= \frac{-1.44*10^(-9)((-7\hat{i}+5\hat{j}+10\hat{k})*10^(-9)))}{2295.2}


E=\frac{10.08*10^(-18)\hat{i}}{2295.2}-\frac{7.2*10^(-18)\hat{j}}{2295.2}-\frac{14.4*10^(-18)\hat{k}}{2295.2}

Hence, The electric field is
\frac{10.08*10^(-18)\hat{i}}{2295.2}-\frac{7.2*10^(-18)\hat{j}}{2295.2}-\frac{14.4*10^(-18)\hat{k}}{2295.2}

User Rick J
by
8.0k points