Answer:
W = 1.8 KJ
Step-by-step explanation:
turbine adiabatically: Q = 0
∴ Lost work:
- W = To [ ( S2 - S1 ) + ΔSo ]
∴ To = 300 K
ideal gas:
- S2 - S1 = Cp Ln (T2/T1) - R Ln (P2/P1)
⇒ S2 - S1 = (9/2)*(8.314) Ln (383.5/494.8) - (8.314) Ln (1.7/6.3)
⇒ S2 - S1 = 1.36 J/mol.K
entropy generated in the sourroundings:
∴ Q = ΔU = Cv*ΔT
∴ Cv = 3/2*R = 12.5 J/mol.K.....ideal gas
∴ ΔT = 494.8 - 383.5 = 111.3 K
⇒ Q = 12.5 * 111.3 = 1391.25 J/mol
⇒ ΔSo = 1391.25/300 = 4.638 J/mol.K
⇒ W = ( 300 K ) * [ 1.36 J/mol.K + 4.638 J/mol.K ]
⇒ W = 1799.25 J/mol * 1 mol * ( KJ/1000J )
⇒ W = 1.799 KJ ≅ 1.8 KJ