68.7k views
5 votes
What are the zeros of the function f(x)=x^2+8x+4, expressed in the simplest radical form ?

1 Answer

3 votes

Answer:


x=-4 \pm 2√(3)

Explanation:

The zeros of f is when f=0.

So we need to solve:


x^2+8x+4=0

-----------------------------------------------------------------------------------------------------

I'm going to choose completing the square.

Subtract 4 on both sides:


x^2+8x=-4

Add (8/2)^2 on both sides:


x^2+8x+((8)/(2))^2=-4+((8)/(2))^2

Write left hand side as a square:


(x+(8)/(2))^2=-4+4^2


(x+4)^2=-4+16


(x+4)^2=12

Take the square root of both sides:


(x+4)=\pm √(12)


x+4=\pm √(12)

Simplify right hand side:


x+4=\pm √(4)√(3)


x+4=\pm 2√(3)

Subtract 4 on both sides:


x=-4 \pm 2√(3)

---------------------------------------------------------------------------------------------

You could also go with quadratic formula:


a=1


b=8


c=4

We need to use this formula:


x=(-b\pm √(b^2-4ac))/(2a).

I'm going to evaluate
b^2-4ac first.


b^2-4ac=(8)^2-4(1)(4)=64-16=48

So now we have this so for with the formula:


x=(-8 \pm √(48))/(2(1))

Simplifying the denominator gives:


x=(-8 \pm √(48))/(2)

Now is there a perfect square in 48? Yes, 16 is a perfect square factor in 48.

So we can write:


x=(-8 \pm √(16)√(3))/(2)


x=(-8 \pm 4√(3))/(2)


x=(-8)/(2)\pm (4√(3))/(2)

Reduce fractions:


x=-4 \pm 2√(3)

User Kristian Oye
by
5.9k points