170k views
3 votes
What is the length of BC in the right triangle below?

What is the length of BC in the right triangle below?-example-1

2 Answers

3 votes

Answer:

E:75

Explanation:


\sqrt{21^(2) +72^(2)}

User Vulkanino
by
7.7k points
7 votes

Answer : The length of BC in the right triangle is, 75

Step-by-step explanation :

Using Pythagoras theorem in ΔBAC :


(Hypotenuse)^2=(Perpendicular)^2+(Base)^2


(BC)^2=(AB)^2+(AC)^2

Given:

Side AB = 21

Side AC = 72

Now put all the values in the above expression, we get the value of side BC.


(BC)^2=(21)^2+(72)^2


BC=√((21)^2+(72)^2)


BC=√(441+5184)


BC=√(5625)


BC=75

Therefore, the length of BC in the right triangle is, 75

User Roesslerj
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.