Answer:
![a_(10) = (10)/(65536)](https://img.qammunity.org/2020/formulas/mathematics/college/a9s9mzvz4hh8ppkp1lwhhun7sh6hgz4vnc.png)
Explanation:
The first step to solving this problem is verifying if this sequence is an arithmetic sequence or a geometric sequence.
This sequence is arithmetic if:
![a_(3) - a_(2) = a_(2) - a_(1)](https://img.qammunity.org/2020/formulas/mathematics/college/h0gielglj8swbim53o3qlzybwws67qykfo.png)
We have that:
![a_(3) = 40, a_(2) = 10, a_(3) = (5)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/sulxjeycqsxfxxxts8owrbzhxjeatcofck.png)
![a_(3) - a_(2) = a_(2) - a_(1)](https://img.qammunity.org/2020/formulas/mathematics/college/h0gielglj8swbim53o3qlzybwws67qykfo.png)
![(5)/(2) - 10 = 10 - 40](https://img.qammunity.org/2020/formulas/mathematics/college/7dx85yurfr081zkbeklas0a0w36bfx5orc.png)
![(-15)/(2) \\eq -30](https://img.qammunity.org/2020/formulas/mathematics/college/2h9flaopaxlh8m3peksmv1fm4x565p2io3.png)
This is not an arithmetic sequence.
This sequence is geometric if:
![(a_(3))/(a_(2)) = (a_(2))/(a_(1))](https://img.qammunity.org/2020/formulas/mathematics/college/ju61nv3hj1mo2u284af5axvvbz4pte3t5t.png)
![\frac{\frac{5}[2}}{10} = (10)/(40)](https://img.qammunity.org/2020/formulas/mathematics/college/2eh5ngbet242pb3as5955mkf36b4pl19ym.png)
![(5)/(20) = (1)/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/30itg45ykdr6x50ze2plf8amxoiz87zqxa.png)
![(1)/(4) = (1)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/u68l2az1kao81yglzd9paijpskp7mcbn2j.png)
This is a geometric sequence, in which:
The first term is 40, so
![a_(1) = 40](https://img.qammunity.org/2020/formulas/mathematics/college/8henx43gc2ctdtdzl4uo020k5ja3y07kti.png)
The common ratio is
, so
.
We have that:
![a_(n) = a_(1)*r^(n-1)](https://img.qammunity.org/2020/formulas/mathematics/college/1cpyvxsmxgotk18dhjwd408y0ysh3wz3pf.png)
The 10th term is
. So:
![a_(10) = a_(1)*r^(9)](https://img.qammunity.org/2020/formulas/mathematics/college/smw21osgssvsvi4yw7fwsn4betadd1i5g3.png)
![a_(10) = 40*((1)/(4))^(9)](https://img.qammunity.org/2020/formulas/mathematics/college/1eqxqo5hd8pz405vsfomg5f5m3iz3xp0cy.png)
![a_(10) = (40)/(262144)](https://img.qammunity.org/2020/formulas/mathematics/college/vousjs3ywsvwenng4r7rmjsnmfyrx0ocu6.png)
Simplifying by 4, we have:
![a_(10) = (10)/(65536)](https://img.qammunity.org/2020/formulas/mathematics/college/a9s9mzvz4hh8ppkp1lwhhun7sh6hgz4vnc.png)